cho hình bình hành abcd có o là giao điểm của hai đg chéo gọi E,F lần lượt là trung điểm AD , BC . K,I lần lượt là giao điểm BE,DF với đường chéo AC chứng minh rằng ứ giác BEDF là hình bình hành ; AK=HI=IC
Cho tam giác abc nhọn(ab<ac),Gọi D và E lần lượt là trung điểm của Ab và AC
a) Chứng Minh tứ gics BDEC là hình thang
b)Qua D kẻ Dx song song với AC cắt BC tại F,gọi G là trung điểm của DC.CM:3 điểm E;G;F thẳng hàng
c)Gọi H là giao điểm của BG và DF,AH cắt GF tại I.CM:H là trọng tâm tam giác BDC và BI // CD
Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của BC, CD. AM, AN lần lượt cắt BD tại E, F. Chứng minh rằng:
a)E,F lần lượt là trọng tâm của các tam giác ABC và ACD
b)EB=EF=DF
Bài 1 : Cho hình bình hành ABCD ( AB > BC ) . Tia phân giác của góc D cắt AB ở E , tia phân giác của góc B cắt CD ở F . a ) Chứng minh DE // BF b ) Tứ giác DEBF là hình gì Bài 2 : Cho hình bình hành ABCD . gọi K , I lần lượt là trung điểm của các cạnh AB , CD . Gọi M , N lần lượt là giao điểm của AI , CK với đường chéo BD . Chứng minh AC , BD , IK đồng quy tại một điểm
1 Cho tam giác ABC, gọi I, K lần lượt là trung điểm của AB và AC. E đối xứng với C qua I, F đối xứng với B qua K. Chứng minh E đối xứng với F qua A.
Cho tam giác ABC nhọn có AB < AC. Gọi D, E, F lần lượt là trung điểm của AB, AC, BC.
Chứng minh tứ giác BDEF là hình bình hành?
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.
a/ Chứng minh: Tứ giác BMNP là hình bình hành.
b/ Gọi I là trung điểm của MP. Chứng minh: Ba điểm B, I, N thẳng hàng.
Bài 6 :Cho hình bình hành ABCD, gọi E,F lần lượt là trung điểm của AB và CD
a) Tứ giác DEBF là hình gì?
b)C/m: AC,BD,EF đồng quy
c) Gọi giao điểm của AC với DE và BF thứ tự là M,N, chứng minh tứ giác EMFN là hình bình hành
d) Tính SEMFN khi AC = a, BC = b, AC ⊥ BD
Cho tam giác ABC có E,F,D lần lượt là trung điểm AB, BC và CA. Chứng minh: a) tứ giác BFED là hình bình hành. b) Trên tia đối của tia FD lấy điểm M sao cho FD=FM. Chứng minh tứ giác ABDM là hình bình hành. c) Chứng minh tứ giác AMCD là hình bình hành.