Xin sự trợ giúp câu e ah,
Bài 2. Cho tam giác ABC vuông tại A ( AB < AC ), BD là phân giác của góc ABC ( D thuộc AC ). Kẻ CE vuông góc với BD tại E.
a. Chứng minh ∆ABD ~ ∆ECD;
b. Chứng minh = ;
c, Khi AB = 3cm; AC = 4cm, hãy tính độ dài đoạn AD và SCDE ?
d. kẻ đường thẳng vuông góc với BD tại B, đường thẳng này cắt đường thẳng AC tại K. Chứng minh: AD. CK = AK.CD;
e. Gọi T là giao điểm của AE và BK, H là hình chiếu vuông góc của A trên BD. Chứng minh ba điểm C; H; T thẳng hàng.
cho tam giác ABC vuông tại A có AB= 6cm và BC= 10cm.kẻ đường phan giác CD của tam giác ABC (D ϵ AB)
a) tính độ dài cạnh AC. Tính độ dài đoạn thẳng BD và AD.
b) kẻ đường cao AH (H ϵ BC). Chứng minh AB2=HB.BC. Từ đó suy ra độ dài AH.
c) AH cắt CD tại E. Chứng minh AD.EH=ED.BD
ho tam giác abc vuông tại A có AB <AC .trên cạnh AC lấy D sao cho AD=AB. kẻ CE vuông góc với BD (E thuộc BD) a) chứng minh 2 góc EAC và EBC bằng nha b)kéo dài AB và CE cắt nhau tại F. CHứng minh diện tích tam giác FAE = diện tích tam giác ABCE
tam giác ABC D,E lần lượt thuộc AB, AC sao cho BD=CE=BC O là giao BE,CD Qua O vẽ đường thẳng song song với tia phân giác của góc A, đường thẳng này cắt AC ở K. Chứng minh rằng AB=CK
Cho tam giác ABC có AH là đường cao ( H thuộc BC). Gọi E và D lần lượt là hình chiếu
của H trên AB và AC. Chứng minh rằng :
a)tam giác ABH ~ tam giác AHE
b) HE2 = AE. BE
c) Gọi M là giao điểm của BD và CE. Chứng minh rằng tam giác ADE ~ tam giác ABC.
d) Chứng minh góc HAD = góc DEH
1.Cho tam giác \(ABC\left(AB< AC\right)\) , tia phân giác góc \(A\) cắt \(BC\) ở \(K\). Qua trung điểm \(M\) của \(BC\) kẻ một tia song song với \(KA\) cắt đường thẳng \(AB\) ở \(D\) , cắt \(AC\) ở \(E\) . Chứng minh \(BD=CE\)
2.Cho tam giác \(ABC\) có \(AB< AC\) , \(D\) là một điểm nằm giữa \(A\) và \(C\) . Chứng minh rằng \(\Delta ABD=\Delta ACB\) và \(AB^2=AC.AD\)
Cho tam giác ABC vuông tại a có AB bằng 6 cm AC bằng 8 cm đường cao AH và đường phân giác BD cắt nhau tại I a) tính AC AD và DC b) chứng minh hai tam giác ABC và đồng dạng suy ra Ac2 = CH x BC c)chứng minh hai tam giác ABD và tam giác CDB đồng dạng b chứng minh IH x BC = IA. AD
Cho \(\Delta\)ABC có AB = c ; BC = a ; AC = b. Qua A kẻ đường thẳng song song với BC cắt các tia phân giác của \(\widehat{ABC}\) và \(\widehat{ACB}\) tại D và E. Từ A vẽ AP\(\perp\)BD ; AQ\(\perp\)CE. PQ lần lượt cắt BE, CD tại M và N. Tính MN, PQ theo a, b, c.
a) Chứng minh P và Q lần lượt là trung điểm BP và CE.
b) Chứng minh M và N lần lượt là trung điểm BE và CD.
c) Tính MN và PQ theo a, b, c.