a: Xét ΔABF và ΔACE có
AB=AC
\(\widehat{BAF}\) chung
AF=AE
Do đó: ΔABF=ΔACE
=>BF=CE
AE+EB=AB
AF+FC=AC
mà AE=AF và AB=AC
nên EB=FC
Xét ΔEBC và ΔFCB có
EB=FC
BC chung
EC=FB
Do đó: ΔEBC=ΔFCB
b: ΔABF=ΔACE
=>\(\widehat{ABF}=\widehat{ACE}\)
=>\(\widehat{IBE}=\widehat{ICF}\)
ΔBEC=ΔCFB
=>\(\widehat{BEC}=\widehat{CFB}\)
=>\(\widehat{IEB}=\widehat{IFC}\)
Xét ΔIEB và ΔIFC có
\(\widehat{IEB}=\widehat{IFC}\)
BE=CF
\(\widehat{IBE}=\widehat{ICF}\)
Do đó: ΔIEB=ΔIFC