Luyện tập chung trang 108

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm. Cho điểm M nằm trên cạnh BC sao cho BM = 4cm. Vẽ đường thẳng MN vuông góc với AC tại N và đường thẳng MP vuông góc với AB.

a) Chứng minh ΔBMP ∽ ΔMCN 

b) Tính độ dài đoạn thẳng AM

a) Ta thấy \(A{B^2} + A{C^2} = B{C^2}\)

=> Tam giác ABC vuông tại A

Có AC ⊥ AB

mà MP ⊥ AB

=> MP // AC

=> \(\widehat {BMP} = \widehat {MCN}\) (2 góc đồng vị)

Xét tam giác vuông BMP (vuông tại P) và tam giác MCN (vuông tại N) có \(\widehat {BMP} = \widehat {MCN}\)

=> ΔBMP ∽ ΔMCN 

b) Xét tam giác BMP và tam giác BAC có MP // AC

=> \(\widehat {BMP} = \widehat {BAC}\) 

=> \(\frac{4}{{40}} = \frac{{PM}}{8}\)

=> PM=3,2(cm)

=> BP=2,4 (áp dụng định lý Pythagore trong tam giác vuông BMP)

=> AP=3,6 (cm)

=> \(AM = \sqrt {23,2} \)(áp dụng định lý Pythagore trong tam giác vuông AMP)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết