CHO TAM GIÁC ABC CÂN TẠI A TRÊN NỮA MẶT PHẲNG BỜ BC KHÔNG CHỨA A VẼ TIA Cx//AB.GỌI O LÀ TRUNG ĐIỂM CỦA BC .TRÊN CẠNH AB LẤY ĐIỂM M TRÊN TIA Cx LẤY ĐIỂM N SAO CHO CN=BM CHỨNG MINH
a) TIA CB LÀ TIA PHÂN GIÁC GÓC ACx
b)O LÀ TRUNG ĐIỂM CỦA MN
CÁC BẠN VẼ HÌNH RÙI GIẢI LUN NHÉ
Bài 21: Cho ABC có AB = AC, M là trung điểm BC
a) CM : ABM=ACM
b) Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tia Cx // AB, lấy D Cx sao cho AB=CD. Chứng minh : ABC =DCB
c) Gọi E là trung điểm AC. Trên tia đối của tia EB lấy điểm N sao cho EB=EN.
Chứng minh: C là trung điểm của DN.
Cho tam giác ABC có (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD.
a) Chứng minh rằng AC song song với BD.
b) Trên nửa mặt phẳng bờ AD không chứa điểm Bvẽ tia Ax song song với BC. Trên tia Ax lấy điểm H sao cho AH=BC. Chứng minh rằng ba điểm H, C và D thẳng hàng.
Cho tam giác abc cân tại a trên cạnh BC lấy điểm M trên tia đối của tia CB lấy điểm N sao cho BM=CM, các đường thẳng vuông góc với BC kẻ từ M và N cắt AB và AC lần lượt tại D và E, đương thẳng DE cắt BC tại I. Gọi O là giao điểm của đường phân giác góc A với đường thẳng vuông góc với AC tại C. CMR: a, DM=EN b, I là trung điểm của DE c,Tam giác BAC=Tam giác COE d, OI vuông góc với DE
cho tam giác ABC, trên tia đối tia AB lấy điểm M sao cho AB=AM. Trên tia AC lấy điểm N sao cho AC=AN. Chứng minh:
a) tam giác ABC=tam giác AMN
b) chứng minh BC//MN
c) gọi P và Q lần lượt là trung điểm của BC và MN. Chứng minh A là trung điểm của PQ
Cho tam giác ABC vuông tại A
a/ Trên tia đối của tia AC lấy điểm D sao cho AD=AC
Chứng minh ΔABC=ΔABD và suy ra tam giác DBC cân tại B
b/ Lấy điểm M thuộc cạnh BD, điểm N thuộc cạnh BC sao cho BM=BN. Chứng minh MN//DC
c/ Trên tia đối của tia CB lấy điểm E sao cho CE=CN. Từ điểm M kẻ đường thẳng song song với BC cắt cạnh CD tại F. Nối ME cắt cạnh CD tại I . Chứng minh IF=IC
Bài 1. Cho tam giác ABC vuông ở A, M là trung điểm BC. Kẻ tia Cx vuông góc CA (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC ). Trên tia Cx lấy điểm D sao cho AB=CD . Chứng minh ba điểm B,M,D thẳng hàng.
Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC,D là trung điểm của AC.
a) Trên tia đối của tia DB lấy điểm E sao cho DE=DB. Chứng minh rằng AE song song với BC.
b) Trên tia đối của tia AB lấy điểm Fsao cho AF=AB. Chứng minh rằng góc FAC= 2 góc ABC
c) Chứng minh rằng AD song song với EF và AD = 1/2 EF
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.
a) Chứng minh ∆ AMB = ∆ AMC.
b) Chứng minh AM là tia phân giác của góc BAC.
c) Chứng minh AM ⊥ BC.
d) Trên nửa mặt phẳng bờ BC không chứa điểm A, lấy điểm D sao cho DB = DC.
Chứng minh ba điểm A, M, D thẳng hàng
Giúp mình vs