Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Lưu Gia Ngân

Cho tam giác ABC biết AB=3cm, AC=4cm, BC=5cm. Trên tia đối của tia AC lấy điểm D sao cho AD=DC.

a, Chứng minh tam giác ABC vuông.

b, Chứng minh tam giác BCD cân.

c, Gọi E là trung điểm của BD; CE cắt AB tại O. Tính OA, OC

Không Tên
13 tháng 4 2017 lúc 20:20

đề sai, sửa lại là "AD=AC"

a)vì \(AB^2+AC^2=BC^2\) nên tam giác ABC vuông tại A(ĐL pytago đảo)

b)tam giác BCD có: AB vừa là đường cao, vừa là đường trung tuyến nên tam giác BCD cân tại B.

c) từ E kẻ đường thẳng song song với AB và cắt AD tại H.

vì E là trung điểm của DB và HE//AB nên H là trung điểm của AD hay HE là đường trung bình của tam giác ADB.

suy ra AH=HD=AD/2=2cm

HE=AB/2=5/2=2,5cm

xét tam giác CAO và tam giác CHE có:

\(\widehat{CAO}=\widehat{CHE}=90^o;\widehat{HCE}:chung\)

nên tam giác CAO đồng dạng với tam giác CHE (g.g)

\(\Rightarrow\dfrac{CA}{CH}=\dfrac{AO}{HE}hay\dfrac{CA}{CA+AH}=\dfrac{AO}{HE}\\ \Rightarrow AO=\dfrac{CA.HE}{CA+AH}=\dfrac{5}{3}cm\)

áp dụng ĐL pytago vào tam giác CAO, ta có:

\(AC^2+AO^2=CO^2\)

\(\Rightarrow CO=\sqrt{AC^2+AO^2}=\dfrac{13}{3}cm\)

vậy AO=5/3cm; CO=13/3cm


Các câu hỏi tương tự
Nguyễn Mai Nhan Ngọc
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
Lê Trần Bảo Ngọc
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
bịp Tên
Xem chi tiết
Nguyễn Thị Trà Giang
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
Trần Huỳnh Mai Khanh
Xem chi tiết