1. Cho AK, BM là 2 trung tuyến của tam giác ABC. Hãy phân tích các vecto AB, BC, AC theo vecto u=AK, v=BM.
2. Cho tam giác ABC. Lấy M,N,P ll trên các đoạn AB,BC,CA sao cho AM=1/3AB, BN=1/3BC, CP=1/3CA.
CMR vecto AN + BP + CM = 0
1: cho hbh ABCD , M tùy ý . CM : vecto MA + MC = vecto MB + MD
2: cho tam giác ABC bên ngoài tam giác vẽ các hbh ABIJ , BCPQ , CARS chứng minh vecto RJ + IQ+PS = vecto ko
3: cho tam giac ABC đều cạnh a tính
a) độ dài vecto AB+ BC
b) độ dài vecto AB + AC
1. Cho tam giác ABC , M là trung điểm AB , N thuộc cạnh AC sao cho NC=2NA , K là trung điểm MN
a) chứng minh vecto KA=1/4AB+1/6AC
b) gọi D là trung điểm BC chứng minh vecto KD=1/4AB+1/3AC
2. Cho tam giác ABC trung tuyến AM , I là trung điểm AM , K là điểm trên cạnh AC sao cho AK=1/3AC
a) phân tích vecto BI , BK theo vecto a=vecto BA vecto b= vecto BC
b) chứng minh B,I,K thẳng hàng
1. Cho tam giác ABC có trọng tâm G M là trung điểm BC I là điểm đối xứng với B qua G . Phân tích vectơ MI theo vectơ AB và vectơ AC
2. Cho▲ABC M là trung điểm của BC sao cho MB=2MC . CMR: vecto AM=1/3 vecto AB +2/3 vecto AC
Cho AK,BM lần lượt là hai trung tuyến của tam giác ABC . hãy phân tích các vecto AB,BC,AC theo 2 vecto u= AK, v= BM
1, Cho tam giác ABC có trọng tâm G. Gọi D là điểm đối xứng với G qua . B.
a, Chứng minh: vecto AD = 5/3 vecto AB - 1/3 vecto AC
b, AD cắt BC tại E. Tính BE/BC
2 Cho tam giác ABC có trọng tâm G. Gọi D là điểm đối xứng với B qua G.
a, Chứng minh vecto AD = -(1/3) vecto AB + 2/3 vecto AC.
b, AD cắt BC tại E. Tính BE/BC.
GIÚP VỚI Ạ ! MÌNH CẦN GẤP Ạ!
cho tam giác ABC . gọi M là điểm thuộc cạnh AB , N là điểm thuộc cạnh AC sao cho AM =\(\dfrac{1}{3}\) AB , AN =\(\dfrac{3}{4}\) AC . gọi O là giao điểm của CM và BN
a) Biểu diễn vecto \(\overrightarrow{AO}\) theo 2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) trên đường thẳng BC lấy E . Đặt \(\overrightarrow{BE}\)= x.\(\overrightarrow{BC}\) . tìm x để A,O ,E thẳng hàng
Cho tam giác ABC vuông tại A có AB=4, AC =3. Tính độ dài các vecto
Vecto BC - vecto CA