Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) (AB < AC). Đường cao BE kéo dài cắt đường tròn tại K. Kẻ KD vuông góc với BC tại D. Qua E kẻ đường thẳng vuông góc với OA cắt AB tại H. Tia DE cắt AB tại I.
a, Chứng minh tứ giác KEDC nội tiếp. Xác định tâm của đường tròn này.
b, Chứng minh KB là tia phân giác của góc AKD
c, Chứng minh tứ giác CKIH là hình thanh
Cho đường tròn (O) đường kính AB=2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F.
a) Chứng minh BHFE là tứ giác nội tiếp
b) Chứng minh BI.BF=BC.BE
c) Tính diện tích tam giác FEC theo R khi H là trung điểm của OA
d) Cho K di chuyển trên cung nhỏ AC, chứng minh đường thẳng FH luôn đi qua một điểm cố định
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh các tứ giác BDHF, BCEF nội tiếp
b) Chứng minh FC là tia phân giác của góc EFD
c) Hai đường thẳng EF và BC cắt nhau tại M . Đường thẳng qua B và song song với AC cắt AM tại I và cắt AH tại K . Chứng minh tam giác HIK cân
Cho tam giác ABC nhọn AB<AC, nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh tứ giác ABDE nội tiếp?
b) Đường kính CK của đường tròn (O) cắt DE tại M. Chứng minh CF.CK=CA.CB
c) Chứng minh tứ giác AKME nội tiếp và DE vuông góc CK tại M?
\(Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF\)
Cho tam giác MNC có ba góc nhọn ,MN>MC,nội tiếp đường tròn (O;R),hai đường cao MD,CF cắt nhau tại H.
a)CM tứ giác NDHF nội tiếp
b)Tia NH cắt MC tại E.Chứng minh HE.HN=HF.HC
c)Vẽ đường kính MK của (O).Chứng minh MK vuông góc với EF
Cần gấp phần c ạ;-;
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.
Cho ΔABC vuông ở A. Trên AC lấy điểm M và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt đường tròn tại S. Chứng minh rằng:
a. Tứ giác ABCD nội tiếp
b. \(\widehat{ABD}\) = \(\widehat{ACD}\)
c. CA là phân giác của góc \(\widehat{SCB}\)
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn (O;R), hai đường cao BE và CF cắt nhau tại H.
a) Cm tứ giác BCEF nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác BCEF.
b) Vẽ đường kính AI của (O), tia EF và CB cắt nhau tại M. Chứng minh H, K, I thẳng hàng và cm MB.MC=MF.ME
c) Tia MH cắt AK tại D, MA cắt (O) tại T. Cm T, H, K thẳng hàng
d) Giả sử BÂC=60°. Tính bán kính của đường tròn ngoại tiếp tứ giác DEFH theo R.