Bài tập cuối chương 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho sơ đồ hình cây dưới đây

a) Xác suất của biến cố cả A và B đều không xảy ra là

A. 0,32.             B. 0,4.             C. 0,8.             D. 0,92.

b) Xác suất của biến cố B là

A. 0,42.             B. 0,62.             C. 0,28.             D. 0,48.

c) Xác suất điều kiện P(A|B) là

A. \(\dfrac{7}{31}\).               B. \(0,7.\)               C. \(\dfrac{7}{50}\).               D. \(0,48\).

d) Giá trị của biểu thức \(\dfrac{P\left(B\right)P\left(\overline{A}\text{|}B\right)}{P\left(\overline{A}\right)}\) là

A. 0,48.               B. 0,3.               C. 0,5.               D. 0,6.

datcoder
30 tháng 10 lúc 14:21

a) Dựa vào sơ đồ hình cây, xác suất của biến cố cả \(A\) và \(B\) đều không xảy ra là

\(P\left( {\bar A\bar B} \right) = 0,8.0,4 = 0,32\).

Vậy đáp án đúng là A.

b) Với công thức xác suất toàn phần, ta có

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right)\).

Dựa vào sơ đồ hình cây, ta có \(P\left( A \right) = 0,2\); \(P\left( {B|A} \right) = 0,7\); \(P\left( {\bar A} \right) = 0,8\); \(P\left( {B|\bar A} \right) = 0,6\).

Do đó \(P\left( B \right) = 0,2.0,7 + 0,8.0,6 = 0,62\).

Vậy đáp án đúng là B.

c) Sử dụng công thức Bayes, ta có \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\).

Ta có \(P\left( A \right) = 0,2\); \(P\left( {B|A} \right) = 0,7\); \(P\left( B \right) = 0,62\).

Suy ra \(P\left( {A|B} \right) = \frac{{0,2.0,7}}{{0,62}} = \frac{7}{{31}}\).

Vậy đáp án đúng là A.

d) Ta có \(P\left( {A|B} \right) = \frac{7}{{31}}\), suy ra \(P\left( {\bar A|B} \right) = 1 - \frac{7}{{31}} = \frac{{24}}{{31}}\).

Ta có \(P\left( {\bar A} \right) = 0,8\). Như vậy \(\frac{{P\left( B \right)P\left( {\bar A|B} \right)}}{{P\left( {\bar A} \right)}} = \frac{{0,62.\frac{{24}}{{31}}}}{{0,8}} = 0,6\).

Vậy đáp án đúng là D.