S=1+3+32+33+33+...+399
=(1+3)+(32+33)+...+(398+399)
=1*(1+3)+32(1+3)+...+398(1+3)
=1*4+32*4+...+398*4
=4*(1+32+...398) chia hết 4
\(S=1+3+3^2+3^3+...+3^{99}\)
\(S=3^0+3^1+3^2+3^3+...+3^{99}\)
\(S=3^0.\left(1+3\right)+3^2.\left(1+3\right)+...+3^{98}.\left(1+3\right)\)
\(S=3^0.4+3^2.4+...+3^{98}.4\)
\(S=\left(3^0+3^2+...+3^{98}\right).4⋮4\)
\(\Rightarrowđpcm\)
S=1+3+32+33+33+...+399
=(1+3)+(32+33)+...+(398+399)
=1*(1+3)+32(1+3)+...+398(1+3)
=1*4+32*4+...+398*4
=4*(1+32+...398) chia hết 4
![]()