Bài 6: Biến đối đơn giản biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Na

Cho Q = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\): \(\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

a) Tìm đkxđ, rút gọn

b) Tính Q khi x=\(2\sqrt{2}+3\)

le dao hai anh
18 tháng 10 2018 lúc 19:22

a)Đkxđ : x#1 , x > 0

Q = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

Q = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

Q=\(\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

Q=\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

Q=\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}X\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

Q=\(\dfrac{x-1}{\sqrt{x}}\)

b)Thay x = 2\(\sqrt{2}\)+3 vào phương trình ta được :

Q=\(\dfrac{2\sqrt{2}+3-1}{\sqrt{2\sqrt{2}+3}}\)

Q=\(\dfrac{2\sqrt{2}+2}{\sqrt{\left(\sqrt{2}+1\right)}^2}\)

Q=\(\dfrac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

Q= 2

Na
18 tháng 10 2018 lúc 17:12

Các câu hỏi tương tự
....
Xem chi tiết
....
Xem chi tiết
Na
Xem chi tiết
Na
Xem chi tiết
Cold Wind
Xem chi tiết
Na
Xem chi tiết
Na
Xem chi tiết
Na
Xem chi tiết
vũ linh
Xem chi tiết