a) Thay a = -1 vào phương trình
\(\dfrac{x-1}{x+3}+\dfrac{x-3}{x+1}=2\)
\(\Rightarrow\dfrac{x^2-1+x^2-9}{\left(x+3\right)\left(x+1\right)}=2\)
\(\Rightarrow2x^2-10=2\left(x+3\right)\left(x+1\right)=2x^2+8x+6\)
\(\Rightarrow2x^2+8x+6-2x^{10}+10=0\)
\(\Rightarrow8x+16=0\Rightarrow x=-2\)
b, c Làm tương tự như câu a
d)
Phương trình nhận x = 1 làm nghiệm
=> \(\dfrac{1+a}{1+3}+\dfrac{1-3}{1-a}=2\)
\(\Rightarrow\dfrac{a+1}{4}+\dfrac{2}{a-1}=2\)
\(\Rightarrow\dfrac{a^2-1+8}{4\left(a-1\right)}=2\)
\(\Rightarrow a^2+7=2\left(4a-1\right)=8a-2\)
\(\Rightarrow a^2-8x+9=0\)
\(\Rightarrow\left[{}\begin{matrix}a=4+\sqrt{7}\\a=4-\sqrt{7}\end{matrix}\right.\)