cho p=\(\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right)\div\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
a)rút gọn p
b)tính giá trị của p khi\(9x^2-10x+1=0\)
c)tính giá trị của p khi \(x=8-2\sqrt{7}\)
d)tìm các giá trị của x dể p=\(\dfrac{6}{5}\)
e)tìm x sao cho p=\(\dfrac{x}{5\sqrt{x}-3}\)
lm nhanh giúp mk nhé
a)
\(P=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-4\right)+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)
\(P=\dfrac{3x-2\sqrt{x}-1-3\sqrt{x}+4+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)
\(P=\dfrac{3\left(x+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)
\(P=\dfrac{x+1}{3\sqrt{x}-1}\)
b) Từ phương trình suy ra \(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)
Vói x=1
\(P=\dfrac{1}{3\sqrt{1}-1}=\dfrac{1}{2}\)
Với x= 1/9
\(P=\dfrac{\dfrac{1}{9}}{3\sqrt{\dfrac{1}{9}}-1}\) không có nghiệm
d)
\(\dfrac{x}{3\sqrt{x}-1}=\dfrac{6}{5}\Leftrightarrow5x=18\sqrt{x}-6\)
\(\Leftrightarrow x=\dfrac{9\pm\sqrt{51}}{5}\)
a) Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+2\sqrt{x}+1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)
\(=\dfrac{3x}{\left(3\sqrt{x}-1\right)\cdot3}\)
\(=\dfrac{x}{3\sqrt{x}-1}\)