Chứng minh phương trình \(ax^2+bx+c=0\) luôn luôn có nghiệm với mọi tham số a,b,c trong trường hợp \(5a+4b+6c=0\)
Cho 3 số phân biệt a,b,c ϵ R. Chứng minh rằng phương trình:
\(ax^2+bx+c=0\) luôn có nghiệm trong \(\left[0;\dfrac{1}{3}\right]\) nếu \(2a+6b+19c=0\)
Cho 3 số phân biệt a,b,c\(\in\)R . Chứng minh rằng phương trình:
\(ax^2+bx+c=0\) luôn có nghiệm nếu \(\dfrac{5}{4}a+\dfrac{3}{2}b+2c=0\)
Chứng minh phương trình ( m^2 - 5m + 11 )x^2021 + 2x^2 + 1 = 0 luôn có nghiệm với mọi m
Chứng minh rằng phương trình:
\(5x^3+\left(2m-1\right)x^2+m+6=0\) luôn có ít nhất một nghiệm với mọi giá trị của tham số m
Chứng minh rằng phương trình:
\(5x^3+\left(2m-1\right)x^2+m+6=0\) luôn có ít nhất một nghiệm với mọi giá trị của tham số m
Chứng minh rằng phương trình:
\(5x^3+\left(2m-1\right)x^2+m+6=0\) luôn có ít nhất một nghiệm với mọi giá trị của tham số m
Chứng minh rằng phương trình:
\(x^4-\left(3m-2\right)x^3+mx-1=0\) có ít nhất 2 nghiệm với mọi giá trị của tham số m
Chứng minh rằng phương trình:
\(x^4-\left(3m-2\right)x^3+mx-1=0\) có ít nhất 2 nghiệm với mọi giá trị của tham số m