a, \(x^2-\left(2m+1\right)x+m^2+5m=0\)
Với m=2
\(x^2-\left[2.\left(-2\right)+1\right]x+\left(-2\right)^2+5.\left(-2\right)=0\)
\(x^2+3x-6=0\)
\(\Delta=3^2-4.1.\left(-6\right)\)
\(=9+24\)
\(=33>0\Rightarrow\sqrt{\Delta}=\sqrt{33}\)
\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{-3+\sqrt{33}}{2}\)
\(x_2=\dfrac{-3-\sqrt{33}}{2}\)
Vậy khi m=-2 thì phương trình có nghiệm là \(x_1=\dfrac{-3+\sqrt{33}}{2};x_2=\dfrac{-3-\sqrt{33}}{2}\)
b,Ta có \(\Delta=\left[-\left(2m+1\right)\right]^2-4\left(m^2+5m\right)\)
\(=4m^2+4m+1-4m^2-20m\)
\(=1-16m\)
Phương trình có 2 nghiệm\(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow1-16m\ge0\)
\(\Leftrightarrow m\le\dfrac{1}{16}\)
Khi đó hệ thức viet ta có tích các nghiệm là\(m^2+5m\)
Mà tích các nghiệm bằng 6, do đó \(m^2+5m=6\)
\(\Leftrightarrow m^2+5m-6=0\)
Ta thấy \(a+b+c=1+5+\left(-6\right)=0\) nên \(m_1=1;m_2=-6\)
Đối chiếu với điều kiện \(m\le\dfrac{1}{16}\) thì \(m=-6\) là giá trị cần tìm
-Chúc bạn học tốt-