Bài tập cuối chương 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Cho phương trình \(2{x^2} - 7x + 6 = 0\). Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức:

A = \(\left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right) - {x_1}^2{x_2}^2\).

Nguyễn Quốc Đạt
25 tháng 10 2024 lúc 23:57

Phương trình \(2{x^2} - 7x + 6 = 0\) có \(\Delta  = {( - 7)^2} - 4.2.6 = 1 > 0\) nên nó có hai nghiệm phân biệt \({x_1},{x_2}\).

Theo định lí Viète, ta có:

\({x_1} + {x_2} = \frac{7}{2}\);\({x_1}.{x_2} = \frac{c}{a} = 3\)

Ta có:

\(\begin{array}{l}A = \left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right) - {x_1}^2{x_2}^2\\ = {x_1}{x_2} + 2{x_1}^2 + 2{x_2}^2 + 4{x_1}{x_2} - {x_1}^2{x_2}^2\\ = {x_1}{x_2} + 2\left( {{x_1}^2 + {x_2}^2 + 2{x_1}{x_2}} \right) - {x_1}^2{x_2}^2\\ = {x_1}{x_2} + 2{\left( {{x_1} + {x_2}} \right)^2} - {\left( {{x_1}{x_2}} \right)^2}\\ = 3 + 2.{\left( {\frac{7}{2}} \right)^2} - {3^2}\\ = 3 + \frac{{49}}{2} - 9\\ = \frac{{37}}{2}\end{array}\)