\(\Delta=\left(2m-1\right)^2-4\cdot2\cdot\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\\ =4m^2-12m+9\\ =\left(2m-3\right)^2\ge0\forall x\)
Vì pt luôn có nghiệm với mọi x , theo vi-ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-2m+1\\x_1\cdot x_2=m-1\end{matrix}\right.\)
Ta có : \(4x_1^2+2x_1x_2+4x_2^2=1\)
\(\Leftrightarrow\left(4x_1^2+8x_1x_2+4x_2^2=1\right)-6x_1x_2=1\\ \Leftrightarrow4\left(x_1+x_2\right)^2-6x_1x_2=1\)
\(\Leftrightarrow4\left(-2m+1\right)^2-6\cdot\left(m-1\right)=1\\ \Leftrightarrow4\left(4m^2-4m+1\right)-6m+6=1\)
\(\Leftrightarrow16m^2-16m+4-6m+6-1=0\\ \Leftrightarrow16m^2-24m+5=0\)
\(\Delta'_m=\left(-12\right)^2-16\cdot5=144-80=64\)
\(\Rightarrow\sqrt{\Delta'_m}=8\)
Vì \(\Delta'>0\) nên pt có 2 nghiệm phân biệt
\(\Rightarrow x_1=\dfrac{12+8}{16}=\dfrac{5}{4}\)
\(x_2=\dfrac{12-8}{16}=\dfrac{1}{4}\)
Vậy..............................
Ta có: \(\Delta=\left(2m-1\right)^2-4.2.\left(m-1\right)=4m^2-4m+1-8m+8=4m^2-12m+9=\left(2m-3\right)^2\ge0\)
Vậy phương trình luôn có 2 nghiệm.
Theo định lí Vi-et, ta có:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-1}{-2}=\dfrac{1-2m}{2}\\x_1.x_2=\dfrac{m-1}{2}\end{matrix}\right.\)
\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(\dfrac{1-2m}{2}\right)^2-2.\dfrac{m-1}{2}=\dfrac{4m^2-4m+1}{4}-\left(m-1\right)=\dfrac{4m^2-4m+1-4m+4}{4}=\dfrac{4m^2-8m+5}{4}\)
\(\Rightarrow4x_1^2+2x_1x_2+4x_2^2=4.\dfrac{4m^2-8m+5}{4}+2.\dfrac{m-1}{2}=4m^2-8m+5+m-1=4m^2-7m+4\)
Để \(4x_1^2+2x_1x_2+4x_2^2=1\)thì\(4m^2-7m+4=1\)
\(\Leftrightarrow4m^2-7m+3=0\)
Ta có: 4-7+3=0
=> Phương trình có 2 nghiệm
\(m_1=1;m_2=\dfrac{3}{4}\)
Vậy với m=1 hoặc m=\(\dfrac{3}{4}\) thì phương trình có 2 nghiệm x1;x2 thỏa mãn\(4x_1^2+2x_1x_2+4x_2^2=1\)
Đúng thì tick nhé
PT 2x2+(2m-1)x+m-1=0
\(\Delta\)=(2m-1)2-4.2.(m-1)=4m2-4m+1-8m+8=4m2-12m+9=(2m-3)2
vì (2m-3)2\(\ge\)0 với mọi m=>\(\Delta\ge0\) nên PT có 2 nghiệm phân biệt
theo định lí Vi-ét có \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+1}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)
ta có 4x12+2x1x2+4x22=1
\(\Leftrightarrow4\left(x_1^2+x_2^2\right)+2x_1x_2=1\)
\(\Leftrightarrow4\left(x_1^2+2x_1x_2+x_2^2-2x_1x_2\right)+2x_1x_2=1\)
\(\Leftrightarrow4\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+2x_1x_2=1\)
\(\Rightarrow4\left[\left(\dfrac{-2m+1}{2}\right)^2-2.\dfrac{m-1}{2}\right]+2.\dfrac{m-1}{2}=1\)
\(\Leftrightarrow\left(-2m+1\right)^2-4\left(m-1\right)+m-1-1=0\)
\(\Leftrightarrow4m^2-4m+1-4m+4+m-2=0\)
\(\Leftrightarrow4m^2-7m+3=0\)
có a+b+c=4-7+3=0
\(\left\{{}\begin{matrix}m_1=1\\m_2=\dfrac{3}{4}\end{matrix}\right.\)(thỏa mãn)
vậy m=1;m=\(\dfrac{3}{4}\) thỏa mãn yêu cầu đề bài