Cho nửa đường tròn tâm O đường kính AB. Trên tia đối của tia AB lấy điểm M. Vẽ tiếp tuyến MC với nửa đường tròn. Gọi H là hình chiếu của C trên AB.
a) CMR: tia CA là tia phân giác ∠MCH
b) giả sử MA=a, MC=2a. Tính AB và CH theo a
Cho nửa đường tròn tâm O đường kính AB. Trên tia đối của tia AB lấy điểm M. Vẽ tiếp tuyến MC với nửa đường tròn. Gọi H là hình chiếu của C trên AB.
a) CMR: tia CA là tia phân giác ∠MCH
b) giả sử MA=a, MC=2a. Tính AB và CH theo a
Cho nửa đường tròn (O) đường kính AB. Trên tia đối của tia AB lấy một điểm M. Vẽ tiếp tuyến MC với nửa đường tròn. Goin H là hình chiếu của C trên AB.
a) chứng minh rằng tia AC là tia phân giác của góc MCH
b) giả sử MA=a; MC=2a. Tính AB và CH theo a
Cho nửa đường tròn (O) đường kính AB.Trên tia đối của tia AB lấy một điểm M. Vẽ tiếp tuyến MC với nửa đường tròn.Gọi H là hình chiếu của C trên AB
a,Chứng minh rằng CA là tia phân giác của góc MCh
b,Gỉa sử MA =a, MC =2a. Tính AB và CH theo a
cho nửa đường tròn tâm O đường kính AB .Trên tiếp tuyến Ax của (O) lấy C,trên tiếp tuyến By của (O) lấy D sao cho AC+BD=CD.Chứng minh CD tiếp xúc với nửa đường tròn o tại E
cho nửa đường tròn đường kính ab. c là một điểm thộc nửa ddường tròn, bd phân giác góc abc. bd cắt ac tại e, ad cắt bc tại g. h là điểm đối xưngs của e qa d
a) tứ giác ahge là hình gì
b)chưngs minh ah là tiếp tuyến của đường tronf đường kính ab
. Cho đường tròn (O; R) và (O’; R’) cắt nhau tại A và B. Trên tia đối của tia AB lấy điểm P, kẻ tiếp tuyến PT với đường tròn (O) và tiếp tuyến PE với đường tròn (O’) với T và E là hai tiếp điểm. Chứng mình rằng PTE PET