Dùng kí hiệu \(\forall\) hoặc \(\exists\) để viết các mệnh đề sau :
a) Có một số nguyên bằng bình phương của nó
b) Mọi số (thực) cộng với 0 đều bằng chính nó
c) Có một số hữu tỉ nhỏ hơn nghịch đảo của nó
d) Mọi số tự nhiên đều lớn hơn 0
Dùng các kí hiệu để viết các câu sau và viết mệnh đề phủ định của nó.
a) Có một số hữu tỉ mà nghịch đảo của nó lớn hơn chính nó.
cho các số thực a1,a2,...an.Gọi a la trung bình cộng của chúng
a=\(\dfrac{a1+a2+...an}{n}\)
chứng minh rằng ít nhất một trong các số a1,a2,...an lớn hơn hoặc bằng a
Dùng các kí hiệu để viết các câu sau và viết mệnh đề phủ định của nó
a) Tích của ba số tự nhiên liên tiếp chia hết cho 6
b) Với mọi số thực bình phương của một số là một số không âm
c) Có một số nguyên mà bình phương của nó bằng chính nó
d) Có một số hữu tỉ mà nghịch đảo của nó lớn hơn chính nó
Với mỗi số thực x, xét các mệnh đề P : "x là một số hữu tỉ"; Q : "\(x^2\) là một số hữu tỉ"
a) Phát biểu mệnh đề \(P\Rightarrow Q\) và xét tính đúng sai của nó ?
b) Phát biểu mệnh đề đảo của mệnh đề trên ?
c) Chỉ ra một giá trị của x mà mệnh đề đảo sai ?
Với mỗi số thực x, xét các mệnh để P : "\(x^2=1\)"; "\(x=1\)"
a) Phát biểu mệnh đề \(P\Rightarrow Q\) và mệnh đề đảo của nó ?
b) Xét tính đúng sau của mệnh đề \(Q\Rightarrow P\) ?
c) Chỉ ra một giá trị của x mà mệnh đề \(P\Rightarrow Q\) sai ?
Phát biểu mỗi mệnh đề sau, bằng cách sử dụng khái niệm "điều kiện cần và đủ"
a. Một số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và ngược lại
b. Một hình bình hành có các đường chéo vuông góc là một hình thoi và ngược lại
c. Phương trình bậc hai có hai nghiệm phân biệt khi và chỉ khi biệt thức của nó dương
Dùng kí hiệu \(\forall,\exists\) để viết các mệnh đề sau :
a. Mọi số nhân với 1 đề bằng chính nó
b. Có một số cộng với chính nó bằng 0
c. Mọi số cộng với số đối của nói đều bằng 0
Phát biểu mỗi mệnh đề sau, bằng cách sử dụng khái niệm “điều kiện cần và đủ”
a) Một số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và ngược lại.
b) Một hình bình hành có các đường chéo vuông góc là một hình thoi và ngược lại.
c) Phương trình bậc hai có hai nghiệm phân biệt khi và chỉ khi biệt thức của nó dương.