Chứng tỏ
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{100^2}< 1\)
Cho \(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\)
Chứng tỏ \(A>\dfrac{65}{132}\)
Chứng mình rằng :
a) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \)\(\dfrac{1}{2}\)
b)\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>2\)
Giup mk nha ! Đang cần gấp lắm rùi !
Cho A = \(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\). Chứng minh rằng A < \(\dfrac{7}{4}\)
chứng minh rằng:
E=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{3}{4}\)
Cho A = \(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
Chứng minh A < \(\dfrac{1}{6}\)
Cho A= \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2^{100}-1}\). CMR 50<A<100
Chứng minh rằng : A = \(\dfrac{1}{2}-\dfrac{2}{2^2}+\dfrac{3}{2^3}-\dfrac{4}{2^4}+....+\dfrac{99}{2^{99}}-\dfrac{100}{2^{100}}< \dfrac{2}{9}\)
Cho M = \(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{99}{100}\) ; N = \(\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{100}{101}\).
Tính M \(\cdot\) N.