Bài 3: Cho lục giác ABCDEF có số đo các góc (tính theo độ) là 1 số nguyên và góc A-góc B=góc B-góc C=góc C-góc D=góc D-góc E=góc E-góc F. Tính giá trị lớn nhất của góc A.
Bài 4: Cho lục giác đều ABCDEF. M, N lần lượt là trung điểm của CD, DE. AM cắt BN tại I.
a) Góc AIB=?
b) Góc OID=? (biết O là tâm của lục giác đều)
cho lục giác ABCDEF có các cạn đối song song với nhau . Chúng Minh rằng tam giác ACE và Tam gics BDF có cùng diện tích
Câu 11. Cho tam giác ABC nhọn có trực tâm H. Các đường vuông góc với AB tại B và vuông góc với
AC tại C cắt nhau tại D.
a) Chứng minh tứ giác BDCH là hình bình hành.
b) Gọi M là trung điểm của BC. Chứng minh ba điểm H,M,D thẳng hàng
c) Gọi I là trung điểm của AD. Chứng minh IB = IC
d) Tìm điều kiện của tam giác ABC để tứ giác BDCH là hình thoi
Cho tam giác ABC vuông tại A trung tuyến AM .Lấy điểm D đối xứng với A qua M a) Tứ giác ABDC là hình gì ? b) Lấy H đối xứng với A qua BC .Chứng minh góc H,B,C bằng góc D,C,B c) Tứ giác BHDC là hình gì ? d) Kẻ DK vuông góc với C tại K .Chứng minh AK= DN e) Lấy E đối xứng với M qua AC . Tìm đ/kiện của tam giác ABC để tứ giác AMCE là hình vuông f ) Cho AB=5cm , BC = 13cm tính diện tích tứ giác AMCE
Hình học lớp 8 Cho tam giác ABC có 3 góc nhọn. Vẽ hai đường cao BD và CE (D thuộc AC, E thuộc AB) a) Chứng minh: Tam giác ADB đồng dạng tam giác AEC b) Chứng minh: AD. AC = AB.AE c) Biết DE= 2cm, BC = 4cm. Tính diện tích ADE/ diện tích ABC (Mai thi rồi cíu tôi đi 💦)
Cho tam giác ABC vuông tại A có AB=3cm;AC=4cm . Gọi I là trung điểm của BC. Qua M lần lượt kẻ các đường thẳng vuông với AB và AC tại K và H
a) Chứng minh tứ giác AKIH là hình chữ nhật;
b) Lấy điểm D đối xứng vs điểm I qua điểm K. Chứng Minh tứ giác IBDA là hình thoi
Cho tam giác ABC vuông tại A , kẻ trung tuyến AD ( D thuộc BC ) . Lấy điểm E đối xứng với A qua D . Tìm thêm điều kiện của tam giác ABC để tứ giác ABEC làhình vuông.
A.Tam giác ABC cân tại A .
B.Tam giácABC có góc B bằng 60 độ .
C.Tam giác ABC có góc B bằng 30 độ .
D.Tam giác ABC có góc B bằng 40độ
Cho hình chữ nhật ABCD. M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Chứng minh tứ giác MNPQ là hình thoi.
b) Các đường thẳng AC, BD, MP, NQ gặp nhau tại một điểm
c) Tính tỉ số diện tích các tứ giác MNPQ và ABCD