Cho lăng trụ ABCDA'B'C'D' , ABCD là hình chữ. AB = 2a, AD = 2a\(\sqrt{\text{3}}\), A'O vuông góc với (ABCD) với O là giao điểm của AC và BD. (AA', (ABCD)) = 60o
a, Tính AA'
b, (A'C,(A'BD))
c, (A'O,(A'CD))
d, (A'I,(ABB'A')) với I là trung điểm CD
Cho lăng trụ ABCA'B'C' có cạnh bên = a, d(C,(C'AB)) = \(\dfrac{a\sqrt{3}}{2}\). Tính ((C'AB)(ABC)
Cho lăng trụ đứng ABCA'B'C' có đáy là tam giác vuông cân tại A với AB = AC = a, A'B tạo với đáy 1 góc α biết tanα = 2
a, Tính (A'B; (BCC'B'))
b, Tính (C'B; (A'B'BA))
Cho lăng trụ đứng ABCA'B'C' có đáy là tam giác vuông cân tại A với AB = AC = a, A'B tạo với đáy 1 góc α biết tanα = 2
a, Tính AA'
b, Tính (A'B; (BCC'B'))
c, Tính (C'B; (A'B'BA))
giúp tớ.
cho lăng trụ ABCA'B'C' có đáy ABC là tam giác vuông cân tại B, AC=2a. hình chiếu vuông góc của A'B lên mặt phẳng (ABC) là trung điểm của AB. đường thẳng A'B tạo với mặt phẳng (ABC) một góc bằng 45 độ. chứng minh A'B vuông góc với B'C
Cho hình lăng trụ đứng ABC.A'B'C' có hai đáy là tam giác vuông tại A, A', AB = a, AC=\(a\sqrt{2}\) và AA'=\(a\sqrt{3}\). Xác định và tính độ dài đoạn vuông góc chung của AB' và BC'
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, cạnh bên SA vuông góc với đáy và SA = \(\text{a}\sqrt{3}\). Gọi AE, AH lần lượt là các đường cao của ΔSAB và ΔSAD
1) Chứng minh rằng: BC ⊥ (SAB), BD ⊥ (SAC)
2) Chứng minh rằng: (SAD) ⊥ (SDC)
3) Chứng minh rằng: AE ⊥ SC và AH ⊥ SC
4) Tính góc giữa: đường thẳng SC và mặt phẳng (SAB), đường thẳng SB và mặt phẳng (SAC)
5) Tính góc giữa (SBD) và (ABCD)
6) Tính khoảng cách từ điểm O đến mặt phẳng (SCD)
Cho lăng trụ ABC.A'B'C' có các cạnh đều bằng a. BAA'=CAA'=60độ. Chứng minh: AC vuông góc BA'
cho hình lập phương ABCD.A'B'C'D' có cạnh a. Gọi O là tâm ABCD; M,N lần lượt là trung điểm AB,AD.
1. BD vuông góc (ACC'A') và A'C vuông góc(BDC'), A'C vuông góc AB', (BDC') vuông góc(ACC'A') và (MNC) vương góc (ACC'A')
2. Tính d(C,(BDC')),d(C,(MNC'))
3. Tính tan(AC,(MNC')) và tan((BDC'),(ABCD))
4. Tính cosin((MNC'),(BDC'))
5. Tính d(AB',BC')