Bài tập cuối chương VII

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho hypebol có phương trình: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

a) Tìm các giao điểm \({A_1},{A_2}\)của hypebol với trục hoành (hoành độ của \({A_1}\)nhỏ hơn của \({A_2}\)).

b) Chứng minh rằng, nếu điểm M(x; y) thuộc nhánh nằm bên trái trục tung của hypebol thì \(x \le  - a\) , nêu điêm M(x, y) thuộc nhánh nằm bên phải trực tung của hypebol thì \(x \ge a\).

c) Tìm các điểm\({M_1},{M_2}\) tương ứng thuộc các nhánh bên trái, bên phải trực tung của hypebol để \({M_1}{M_2}\) nhỏ nhất.

Hà Quang Minh
1 tháng 10 2023 lúc 20:21

a) Các giao điểm của \(\left( H \right)\) với trục hoành có tọa độ thỏa mãn hệ phương trình

\(\left\{ \begin{array}{l}\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  \pm a\\y = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{A_1}\left( { - a;0} \right)\\{A_2}\left( {a;0} \right)\end{array} \right.\)

b) Với \(M\left( {x;y} \right)\) thuộc (H) ta có \(\frac{{{x^2}}}{{{a^2}}} = 1 + \frac{{{y^2}}}{{{b^2}}} \ge 1 \Rightarrow {x^2} \ge {a^2} \Rightarrow \left[ \begin{array}{l}x \le  - a\\x \ge a\end{array} \right.\)

Do đó nếu \(M\left( {x;y} \right)\) thuộc bên trái trục tung khi thì \(x < 0\), suy ra \(x \le  - a\).

Nếu \(M\left( {x;y} \right)\) thuộc bên phải trục tung khi thì \(x > 0\), suy ra \(x \ge  - a\).

c) Gọi \({M_1}\left( {{x_1};{y_1}} \right),{M_2}\left( {{x_2};{y_2}} \right)\). Vì \({M_1}\) thuộc nhánh bên trái trục tung nên ta có  \({x_1} \le  - a\),\({M_2}\) thuộc nhánh bên phải trục tung nên ta có \({x_2} \ge a\).

Suy ra \({M_1}{M_2} = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}  \ge \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2}+(0- 0)^2}  = \left| {{x_2} - {x_1}} \right| \ge \left| {a - \left( { - a} \right)} \right| = 2a\)

Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{y_2} - {y_1} = 0\\{x_2} = a\\{x_1} =  - a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_2} = a\\{x_1} =  - a\\{y_1} = {y_2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{M_1}\left( { - a;0} \right)\\{M_2}\left( {a;0} \right)\end{array} \right.\)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết