\(MNPQ\) là hình thoi, \(MP\) ∩ \(NQ\) \(=\) {\({Q}\)}
\(\rightarrow MP\) ⊥ \(PQ\) tại \(O\)
\(\rightarrow OP=OM,OQ=ON\)
Áp dụng định lý Pytago vào \(△ MON\) vuông tại \(O\)
\(\rightarrow MN^2=MO^2+ON^2\)
\(\Leftrightarrow 10^2=3^2+ON^2\)
\(\Leftrightarrow 100=9+ON^2\)
\(\Leftrightarrow ON^2=91\)
\(\Leftrightarrow ON=\sqrt{91}\)
\(\rightarrow QN=2\sqrt{91}\)
Lại có : \(MP=6\) cm
\(\rightarrow S_{MNPQ}=\dfrac{1}{2}.2\sqrt{91}.6=6\sqrt{91}\) (\(cm^2)\)