Bài tập cuối chương 5

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho hình thoi ABCD và hình bình hành BCMD. Gọi O là giao điểm của AC và BD. Chứng minh:

a) \(O{\rm{D}} = \frac{1}{2}CM\) và tam giác ACM là tam giác vuông.

b) Ba điểm A, D, M thẳng hàng.

c) Tam giác DCM là tam giác cân

a) Vì BCMD là hình bình hành

Suy ra: BD = CM (1)

Mà ABCD là hình thoi

O là giao điểm của AC và BD

\( \Rightarrow O{\rm{D}} = \frac{1}{2}B{\rm{D}}(2)\)

Từ (1) và (2) suy ra: \(O{\rm{D}} = \frac{1}{2}CM\)

Vì BCMD là hình bình hành nên BD // CM (3)

Vì ABCD là hình thoi nên \(B{\rm{D}} \bot AC(4)\)

Từ (3), (4) suy ra: \(AC \bot CM\)

Suy ra: tam giác ACM là tam giác vuông tại C

b) ta có: AD // BC (vì ABCD là hình thoi)

DM // BC (vì DBCM là hình bình hành)

Suy ra A, D, M thẳng hàng

c) Ta có:BC = DC (vì ABCD là hình thoi)

DM = BC (vì DBCM là hình bình hành)

Suy ra: DM = DC

Suy ra tam giác DCM là tam giác cân tại D


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết