Cho hình thoi ABCD qua C kẻ đường thẳng d cắt các tia đói BA và DA theo thứ tự tại E và F . Chứng minh :
a,EBBA =ADDF
b,Tam giác EBD đồng dạng với tam giác BDF
c,góc BID = 120 độ
cho góc xOy( góc xOy≠180 độ).Trên tia Ox lấy hai điểm A và B sao cho OA=4cm,OB=12cm>trên tia Oy lấy hai điểm C và D sao cho OC=6cm,OD=8cm
a,c/m 2 tam giác OCB và OAD đồng dạng
b,Gọi giao điểm của các cạnh AD và BC là I,chứng minh rằng hai tam giác AIB và ICD có các góc bằng nhau từng đôi một
cho góc xOy( góc xOy≠180 độ).Trên tia Ox lấy hai điểm A và B sao cho OA=4cm,OB=12cm>trên tia Oy lấy hai điểm C và D sao cho OC=6cm,OD=8cm
a,c/m 2 tam giác OCB và OAD đồng dạng
b,Gọi giao điểm của các cạnh AD và BC là I,chứng minh rằng hai tam giác AIB và ICD có các góc bằng nhau từng đôi một
cho tam giác ABC đường cao AH. các đường trung tuyến BM, CN. gọi D là điểm đối xứng của B qua M. E là điểm đối xứng C qua N. a) tứ giác ABC là hình gì? b) Chứng minh D, E đối xứng qua A c) cho tam giác ABC có AB=AC=5cm, BC=8cm. Tính diện tích ABCD
Trên một cạnh của góc xOy \(\left(\widehat{xOy}\ne180^0\right)\), đặt các đoạn thẳng OA = 5cm, OB = 16 cm. Trên cạnh thứ hai của góc đó, đặt các đoạn thẳng OC = 8cm, OD = 10cm
a) Chứng minh hai tam giác OCB và OAD đồng dạng
b) Gọi giao điểm của các cạnh AD và BC là I, chứng minh rằng hai tam giác IAB và ICD có các góc bằng nhau từng đôi một
cho hình vuông ABCD .lấy điểm E bất kỳ thuộc đoạn BC (E khác B,C). Qua C kẻ đường thẳng vuông góc với đường thẳng AE tại h, CH cắt đường thẳng AB tại K, câu A chưng mình tứ giac ABCH nối tiếp
Cho tam giác ABC có 3 góc nhọn và 3 đường cao AD, BE, CF cắt nhau tại H. Chứng minh
1, BD.BC= BF.BA
2, Tam giác BDF đồng dạng với tam giác BAC và góc BDF = góc BAC
3, góc CDE = góc BAC
4, DH là phân giác của góc FDE
Tam giac ABC có ba đường trung tuyến cắt nhau tại O. Gọi P,Q,R theo thứ tự là trung điểm của OA,OB,OC. Chứng minh tam giác PQR~tam giác ABC