cho hình thang cân ABCD. Có cạnh bên là AB và CD. M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA
a, chứng minh MP là tia phân giác góc QMN
b, hình thang cân ABCD phải có điều kiện gì thì góc MNQ bằng 90 độ
c, CMR: Nếu thêm điều kiện đó thì hình thang cân ABCD sẽ có đường cao bằng đường trung bình của nó
Cho ∆ABC vuông tại A. Vẽ về phía ngoài ∆ đó ∆ABD vuông cân tại B và ∆ACE vuông cân tại C. Gọi H là giao điểm của AB và CD, K là giao điểm của AC và BE. Chứng minh rằng: 1, AH = AK 2, AH.AH = BH.CK