Hình thang cân có hai góc ở đáy bằng nhau
\(\Rightarrow\widehat{C}=\widehat{D}=45^o\) , \(\widehat{A}=\widehat{B}=135^o\)
Kẻ AH vuông CD, BK vuông CD.
Theo tính chất đoạn chắn ta có AB//HK và AB = HK = 13 cm
\(\Rightarrow DH=BK=\frac{\left(DC-AB\right)}{2}=\frac{12}{2}=6\) (cm)
\(\Delta ADH\) vuông tại H. Lại có \(\widehat{D}=45^o\) nên \(\Delta ADH\) cân.
\(\Rightarrow AH=DH=6cm\)
Vậy diện tích hình thang là:
\(S_{ABCD}=\frac{\left(AB+CD\right)AH}{2}=\frac{\left(13+25\right)6}{2}=114cm^2\)