Cho hình thang cân ABCD có AB song song với BC và AD =2CD=2BC.Chứng minh rằng 4 bốn điểm A,B,C,D cùng nằm trên một đường tròn tâm O và AC⊥OB
3) cho hình thang ABCD (đáy AB nhỏ), 2 đường chéo AC và BD vuông góc với nhau tại I. gọi M, N, P, Q lần lượt là trung điểm AB, BC, CD, DA.
a) c/m: đường cao và độ dài đường trung bình của hình thang bằng nhau
b) c/m 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
giúp mk vs ạ mk cần gấp
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .