Gọi \(S_1,S_2,S_3,S_4\) lần lượt là diện tích của các tam giác AGD , AGB , BGC và CGD
Ta có : \(\frac{S_1}{S_2}=\frac{DG}{BG}=\frac{S_4}{S_3}\Rightarrow S_1.S_3=S_2.S_4\) (1)
Dễ thấy tam giác ABD và tam giác ABC có diện tích bằng nhau vì có chung cạnh đáy và đường cao không đổi
Mà : \(S_{ABD}=S_1+S_2;S_{ABC}=S_3+S_2\Rightarrow S_1=S_3\) (2)
Từ (1) và (2) suy ra \(S_2.S_4=S_1^2\Rightarrow S_2=\frac{S_1^2}{4}\)
Suy ra : \(S_{ABCD}=S_1+S_2+S_3+S_4=2S_1+\frac{S_1^2}{S_4}+S_4=2.18+\frac{18^2}{25}+25=\frac{1849}{25}=73,96\left(cm^2\right)\)