cho Δ ABC có góc C là 30 trên cạnh AC láy điểm I .từ I kẻ tia Ix cắt AB tạiK sao cho KIC =150
a, chứng minh IK song song với BC
b, từ K kẻ Dt song song với AC cắt BC tại H
tính KHB
trong mặt phẳng với hệ tọa độ Oxy, cho hình thang vuông ABCD ( vuông tại A và B ) . Gọi M(-3,-3) N lần lược là trung điểm của AD và AB . Xác định tọa độ các đỉnh của hình thang vuông ABCD , biết phương trình các đường thẳng BD: 7x+3y+2=0, CN: x-3y=0, CN: x-y=0và đường thẳng AB đi qua điểm e (-3;1)
Cho tam giác ABC nhọn, AB < AC . Kẻ AD là phân giác góc BAC ( D thuộc BC ). Kẻ Bx song song AD và cắt tia CA tại E.
a, Chứng minh tam giác EAB cân
b, Kẻ tia Ay vuông góc với AD và cắt BE tại F . Chứng minh : F là trung điểm của EB.
Giúp với >< Gấp lắm rồi ạ ><
trong mặt phẳng với hệ tọa độ oxy , cho hình thang vuông ABCD , có B=C=90độ . Phương trình các đường thẳng AC và BD lần lượt là x+2y=0 và x-y-3=0. Xác định tọa độ các đỉnh của hình thang ABCD biết trung điểm AD là m( -3/2; -3/2)
Cho hifnhh thang abcd, gọi i là giao ở 2 đường chéo ac và bd.
a, chứng minh IA.ID=IB.IC
b,đường thẳng qua i vuông góc với ab tại h, vuông góc với cd tại n. chứng minh ih.cd=in.ab
giúp mình với
Cho tam giác ABC vuông tại A . Trung tuyển AK. Trên tia đối của KA lấy H sao cho K là trung điểm của AH . Qua K kẻ đường vuông góc với AK cắt AC và AB lần lượt tại E và D. Gọi I là trung điểm của DE
a. C/m tam giác ABK = HCK
b. Cho Ab =8 ; Ac =10. Tính BC ; AK
c. C/m góc IAE = IEA
d. So sánh BC và DE
1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?
a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC
3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)và \(\overrightarrow{BN}\) ta được
a) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)+\(\frac{2}{5}.\overrightarrow{BN}\) b) \(\overrightarrow{AB=}\)\(-\frac{4}{5}.\overrightarrow{AM}\)\(-\frac{2}{5}.\overrightarrow{BN}\) c) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)-\(\frac{2}{5}.\overrightarrow{BN}\) d) \(\overrightarrow{AB=}-\frac{4}{5}.\overrightarrow{AM}+\frac{2}{5}.\overrightarrow{BN}\)
4/cho tam giác ABC cân tại A, AB=a,\(\widehat{ABC}=30^O\).Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) là :
a) \(\frac{a\sqrt{3}}{2}\) b) \(\frac{a}{2}\) c) a d) \(a\sqrt{3}\)
5/Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=120^O\).Độ dài của vectơ \(\overrightarrow{CB}-\overrightarrow{BA}\)là:
a) \(a\sqrt{3}\) b) 0 c) a d) \(\frac{a\sqrt{3}}{2}\)
8/cho hình chữ nhật ABCD tâm O và AB= a, BC=\(a\sqrt{3}\).Độ dài của vectơ \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\) là
a) 2a b) 3a c) \(\frac{a}{2}\) d) a
10/cho hình bình hành ABCD tâm O.Khi đó \(\overrightarrow{AC}+\overrightarrow{BD}\)
a) cùng hướng với \(\overrightarrow{AB}\) b) cùng hướng với \(\overrightarrow{AD}\) c) ngược hướng với \(\overrightarrow{AB}\) d) ngược hướng với \(\overrightarrow{AD}\)
11/Cho lục giác đều ABCDEF tâm O
a) \(\overrightarrow{AB}=\frac{1}{2}.\overrightarrow{FC}\) b) \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\) c) \(\overrightarrow{AF}+\overrightarrow{CD}=\overrightarrow{0}\) d) \(\overrightarrow{AB}=\overrightarrow{DE}\)
12/ Cho hình bình hành ABCD tâm O.Gọi \(\overrightarrow{v}=\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}+4\overrightarrow{OD.}\)Khi đó
a) \(\overrightarrow{v}=\overrightarrow{AD}\) b) \(\overrightarrow{v}=\overrightarrow{AB}\) c) \(\overrightarrow{v}=2\overrightarrow{AB}\) d) \(\overrightarrow{v}=2\overrightarrow{AD}\)
13/Cho 3 diểm phân biệt A,B,C sao cho \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) ngược hướng và AB=a, AC=b. Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\)là
a) a+b b) a-b c)b-a d) \(\left|a-b\right|\)
Cho tam giác ABC vuông tại A, M là trung điểm của AC, đường trung trực của BC tại N. Chứng mink:
a. MN song song vs AB
b. Tam giác AMN = tam giác CMN
GIÚP MINK VS....SẮP THII ÒYYY
cho 4 đường thẳng (d1),(d2),(d3)và(d4) lần lượt là cái hàm số y=-2x+7 ; y=-2x ; y=3x+2 ; y=mx+n(m\(\ne\)0và m\(\ne\)-2) cho đường thẳng (d3) cắt (d1) và (d2) tại A và B (d4) cắt (d1) và (d2) tạ D và C tìm m,n sao cho ABCD là hình bình hành