Cho hình hộp ABCD. A'B'C'D'. Hai điểm M và N lần lượt nằm trên hai cạnh AD và CC' sao cho \(\dfrac{AM}{MD}=\dfrac{CN}{NC'}\)
a) Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACB')
b) Xác định thiết diện của hình hộp cắt bởi mặt phẳng đi qua MN và song song với mặt phẳng (ACB')
Cho hình hộp ABCD.A'B'C'D'. Gọi M và N lần lượt là trung điểm của hai cạnh bên AA' và CC'. Một điểm P nằm trên cạnh bên DD'.
a) Xác định giao điểm Q của đường thẳng BB' với mặt phẳng (MNP)
b) Mặt phẳng (MNP) cắt hình hộp theo một thiết diện. Thiết diện đó có tính chất gì ?
c) Tìm giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi N, P, Q theo thứ tự là trung điểm của các cạnh BC, CC', C'D'. Tìm diện tích thiết diện tạo bởi mặt phẳng (NPQ) cắt hình lập phương
Hình chóp SABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của cạnh SC, SD. Chứng minh MN//(SAB). Gọi mặt phẳng alpha là mặt phẳng chứa AM và song song với BD, mặt phẳng alpha cắt SB tại E. S1, S2 là kí hiệu cho diện tích của các tam giác SME và SBC. Tính tỉ số S1/S2
Cho hình chóp S.ABCD có đáy ABCD là hình thang ( AD || BC, AD= 2BC ). Gọi M, N lần lượt là trung điểm SA và AB.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Chứng minh MN//(SBC)
c) Gọi O là giao điểm của AC và BD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (OMN)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và cho M là một điểm thay đổi trên cạnh SC. Một mặt phẳng (P) thay đổi qua AM và song song với BD. Mặt phẳng (P) cắt SB, SD lần lượt tại E và FF. Hãy xác định các điểm E, F ?
Cho hình chóp đỉnh S có đáy là hình thang ABCD với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC) ?
b) Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN) ?
c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN) ?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và cho M là một điểm thay đổi trên cạnh SC. Một mặt phẳng (P) thay đổi qua AM và song song với BD. Gọi I, J lần lượt là giao điểm của ME với CB và MF với CD. Chứng minh ba điểm I, A, J thẳng hàng ?
Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ 4 nửa đường thẳng \(Ax,By,Cz,Dt\) ở cùng phía đối với mặt phẳng (ABCD), song song với nhau và không nằm trong mặt phẳng (ABCD). Một mặt phẳng \(\left(\beta\right)\) lần lượt cắt \(Ax,By,Cz,Dt\) tại A', B', C', D'
a) Chứng minh mặt phẳng (\(Ax,By\)) song song với mặt phẳng (\(Cz,Dt\)) ?
b) Gọi \(I=AC\cap BD;J=A'C'\cap B'D'\). Chứng minh IJ song song với AA' ?
c) Cho \(AA'=a;BB'=b;CC'=c\). Hãy tính \(DD'\) ?