a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)
Do đó: ΔAHB∼ΔBCD(G-g)
a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)
Do đó: ΔAHB∼ΔBCD(G-g)
cho tam giác ABC đường cao AH. các đường trung tuyến BM, CN. gọi D là điểm đối xứng của B qua M. E là điểm đối xứng C qua N. a) tứ giác ABC là hình gì? b) Chứng minh D, E đối xứng qua A c) cho tam giác ABC có AB=AC=5cm, BC=8cm. Tính diện tích ABCD
Bài 7. Cho tam giác ABC vuông ở A, đường cao AH.
a. Chứng minh AABC ~ HAC
b. Chứng minh AH2 = HB. HC
c. Cho AC = 10cm, CH = 8cm. Tính độ dài AH và diện tích tam giác ABC
d. Gọi P và Q lần lượt là trung điểm của AH và CH. Gọi M là giao điểm của AQ và BP.
Chứng minh AQ L BP và AH2 = 4PM. PB
Cho tam giác ΔABC vuông tại A có AB=6cm,AC=10cm . Đường cao AH a)Chứng minh ΔABC / ΔABH b)Chứng minh AB²=BH.BC c)Tính BC,AH,BH
Cho hình chữ nhật ABCD có AB bằng 12 cm AD bằng 9 cm gọi H là hình chiếu của A trên AB
a )chứng minh tam giác acd đồng dạng tam giác bad
b) tính BD AD HD
Cho hcn ABCD, AB = 8cm, CD = 6cm. Vẽ đường cao AH của tam giác ADB
a) Chứng minh DA^2 = DH.DB
b) Tính độ dài DH, AH
Giúp vs cần gấp lắm luôn!!!
Cho tam giác ABC vuông tại A đường cao AH chứng minh rằng a. Tam giác ABC đồng dạng với tam giác AC b. AB. AC = AH. BC c. 1/Ah^2 = 1/AB^2 + 1/AC^2
Bài 1 : Cho ∆ABC vuông tại A có AB = 6cm ; AC = 8cm. Kẻ đường cao AH
a, Chứng minh ∆ABC đồng dạng với ∆HBA
b, Tính độ dài các cạnh BC, AH
c, Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của 2 tam giác ACD và HEC
Bài 2 : Cho ∆ABC vuông tại A có đường cao AH. Cho biết AB = 15cm, AH = 12cm.
a, Chứng minh ∆AHB đồng dạng với ∆CHA
b, Tính độ dài các đoạn thẳng BH, HC, AC
c, Trên cạnh AC lấy điểm E sak cho CE = 5cm. Trên cạnh BC lấy điểm F sao cho CF = 4cm. Chứng minh ∆CEF vuông.
Mình chỉ cần viết giả thiết kết luận thôi ạ :vvv
Làm ơn giúp mình với help me :(((
Câu 18: (2,5đ) Cho hình chữ nhật ABCD ( AB < BC). Kẻ đường cao AH của ∆ABC. Kéo dài AH cắt BC tại E và cắt CD tại F.
a/ Chứng tỏ rằng ∆HBA ∆BAE và AB2 = AH. AE. b/ Chứng minh: ∆HBE ∆HAB từ đó suy ra hệ thức HB2 = HA. HE.
C/ Chứng minh rằng: AH2 = HE. HF.
cho tam giác ABC vuông tại A có AB = 6 cm BC = 10 cm vẽ đường cao AH của tam giác ABC( H thuộc BC )
1 cm tam giác ABC đồng dạng tam giác hba
2 cm AB bình = BC.BH áp dụng tính HB
3 tia phân giác của góc B cắt AC tại K cmr AK.AC=AH.KC