Áp dụng định lý Pi-ta-go trong tam giác vuông ABC ta có:
\(AC=\sqrt{AB^2+BC^2}=\sqrt{3^2+4^2}=5\).
Vậy \(\left|\overrightarrow{AC}\right|=5\).
Áp dụng định lý Pi-ta-go trong tam giác vuông ABC ta có:
\(AC=\sqrt{AB^2+BC^2}=\sqrt{3^2+4^2}=5\).
Vậy \(\left|\overrightarrow{AC}\right|=5\).
Cho hình bình hành ABCD tâm O. Gọi M và N lần lượt là trung điểm của AD và BC. Dựa vào các điểm A, B, C, D, O, M, N đã cho, hãy :
a) Kể tên hai vectơ cùng phương với \(\overrightarrow{AB}\), hai vectơ cùng hướng với \(\overrightarrow{AB}\), hai vectơ ngược hướng với \(\overrightarrow{AB}\) (các vectơ kể ra này đều khác \(\overrightarrow{0}\)
b) Chỉ ra một vectơ bằng vectơ \(\overrightarrow{MO}\) , một vectơ bằng vectơ \(\overrightarrow{OB}\) ?Cho hình thoi ABCD cạnh a,góc A bằng 60 độ
a. Tính \(\overrightarrow{|AC|}\)
b.H là hình chiếu của A lên BC . Tính \(\overrightarrow{|AH|}\)
Cho hình thoi ABCD tâm O có AC = 8; BD = 6. Chọn hệ tọa độ \(\left(O;\overrightarrow{i};\overrightarrow{j}\right)\) sao cho \(\overrightarrow{i}\) và \(\overrightarrow{OC}\) cùng hướng, \(\overrightarrow{j}\) và \(\overrightarrow{OB}\) cùng hướng.
a) Tìm tọa độ các đỉnh của hình thoi
b) Tìm tọa độ trung điểm I của BC và trọng tâm của tam giác ABC
c) Tìm tọa độ điểm đối xứng I' của I qua tâm O. Chứng minh A, I', D thẳng hàng
d) Tìm tọa độ của vectơ \(\overrightarrow{AC},\overrightarrow{BD},\overrightarrow{BC}\)
Cho các điểm A, B, C trên trục \(\left(o;\overrightarrow{e}\right)\) có tọa độ lần lượt là : \(5;-3;-4\). Tính độ dài đại số của \(\overrightarrow{AB};\overrightarrow{BA};\overrightarrow{AC};\overrightarrow{BC}\) ?
Cho tứ giác ABCD, số các vectơ khác \(\overrightarrow{0}\) có điểm đầu và điểm cuối là đỉnh của tứ giác bằng bao nhiêu ?
1. Cho hình chữ nhật ABCD có O là giao điểm 2 đường chéo. M,N lần lượt thuộc cạnh AD, AB sao cho MA = 3MD, NB=3NA. Biết \(\overrightarrow{MN}\)= a. \(\overrightarrow{OA}\)+b.\(\overrightarrow{OB}\), tổng a+b bằng?
2. Cho A (0;1), B(2;3);C(2;5); D(-1;1). Chọn mệnh đề đúng:
A. B,A,D thẳng hàng
B. B,A,C thẳng hàng
C. B,C,D thẳng hàng
D. A,C,D thẳng hàng
3. Cho tam giác ABC và M thay đổi thoả mãn:
|\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)| = 3
Biết M thuộc đường tròn. Tính diện tích đường tròn đó?
A. 9\(\pi\) B. 4\(\pi\) C. \(\pi\) D. 3\(\pi\)
Nhờ mọi người giải thích cho em cách làm với ạ. Em cảm ơn.
Cho hình vuông ABCD, E là trung điểm của CD. Hãy phân tích \(\overrightarrow{AE}\) theo hai vectơ \(\overrightarrow{u}=\overrightarrow{AD};\overrightarrow{v}=\overrightarrow{AB}\) ?
Cho lục giác ABCDEF có tâm O. Số các vectơ bằng vectơ \(\overrightarrow{OC}\) có điểm đầu và điểm cuối là đỉnh của lục giác bằng bao nhiêu ?
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng ?
a) \(\overrightarrow{AB}+\overrightarrow{BD}=2\overrightarrow{BC}\)
b) \(\overrightarrow{AC}+\overrightarrow{BC}=\overrightarrow{AB}\)
c) \(\overrightarrow{AC}-\overrightarrow{BD}=2\overrightarrow{CD}\)
d) \(\overrightarrow{AC}+\overrightarrow{AD}=\overrightarrow{CD}\)