a. \(OC=\dfrac{2}{3}.2a.\dfrac{\sqrt{3}}{2}=\dfrac{2a\sqrt{3}}{3}\)
\(\Rightarrow tan\widehat{SCO}=\dfrac{SO}{OC}=\dfrac{3\sqrt{3}}{2}\) \(\Rightarrow\widehat{SCO}\simeq69^0\)
b. Gọi M là trung điểm BC \(\Rightarrow BC\perp\left(SAM\right)\)
Trong mp (SAM), từ A kẻ \(AH\perp SM\Rightarrow AH\perp\left(SBC\right)\)
\(\Rightarrow\widehat{ASM}\) là góc giữa SA và (SBC)
\(SA=\sqrt{SO^2+OC^2}=\dfrac{a\sqrt{93}}{3}\)
\(SM=\sqrt{SA^2-\left(\dfrac{BC}{2}\right)^2}=\dfrac{2a\sqrt{21}}{3}\)
\(AM=a\sqrt{3}\)
Áp dụng định lý hàm cos:
\(cos\widehat{ASM}=\dfrac{SA^2+SM^2-AM^2}{2SA.MM}=...\)