a/ \(\left\{{}\begin{matrix}SA\perp AB\\SA\perp AC\end{matrix}\right.\) \(\Rightarrow SA\perp\left(ABCD\right)\)
b/ Ta có: \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\)
Mà \(BD\perp AC\) (2 đường chéo hình thoi)
\(\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp SC\)
c/ \(BD\perp\left(SAC\right)\Rightarrow BD\perp AH\)
Mà \(AH\perp SO\Rightarrow AH\perp\left(SBD\right)\)
d/ Do \(AH\perp\left(SBD\right)\Rightarrow\widehat{SOA}\) là góc giữa AO và (SBD)
\(AO=\frac{AC}{2}=a\)
\(\Rightarrow tan\widehat{SOA}=\frac{SA}{AO}=1\Rightarrow\widehat{SOA}=45^0\)