Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B có AD=3a, AB=BC=2a. Biết SA⊥(ABCD).
a) Tính khoảng cách từ C đến mặt phẳng (SAD).
b) Tính khoảng cách từ D đến mặt phẳng(SAC).
Hình chóp SABCD có đáy là ABCD là hình thang vuông tại A và B với AB bằng 2a BC bằng 3/2 a AD = 3A hình chiếu vuông góc của s lên mặt phẳng ABCD là trung điểm h của BC biết góc giữa mặt phẳng SCD và mặt phẳng ABCD bằng 60 độ tính khoảng cách từ C đến mặt phẳng SBD
Cho hình chóp SABCD có đáy hình chữ nhật AB=a, BC=2a, SA vuông góc với ABCD, SA= acăn5. Tính khoảng cách từ C đến mp SAD.
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a hai mặt phẳng SAB và SAD cùng vuông góc với mặt đáy gọi M lần lượt là trung điểm của AD tính khoảng cách giữa hai đường thẳng AB và SM biết SC = a căn 3
Cho hình chóp S.ABCD đáy là hình vuông cạnh a có mặt SAB, SAD cùng vuông góc với đáy.Mặt phẳng SBC hợp với đáy góc 30 độ a. Chứng minh các mặt bên là những tam giác vuông b. Tìm góc giữa SB với CD và khoảng cách giữa SB với CD c. Tính khoảng cách từ S đến mặt phẳng (ABCD) d. Tính tổng S các mặt bên ( diện tích xung quanh của hình chóp)
Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và D. AB=2AD, AD=DC, BC=a√2. ∆SBC cân tại S và nằm trong mặt phẳng vuông góc với đág. SA hợp với đáy 1 góc 45°. Tính d(SA;BC)
cho hình chóp SABCD có đáy là hình thang vuông tại A và D, SA vuông góc với đáy, SA=SD=a , AB=2a. Tính \(d_{\left(AB,BC\right)}\)
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A, AB = a, SA vuông góc với mặt phẳng đáy và SA = 3a. Gọi G là trọng tâm của tam giác ABC. Tính khoảng cách từ điểm G đến mặt phẳng (SBC) theo a.
Cho khối chóp ABCD, đáy là hình thang vuông tại A, B. Hai mặt (SAD) và (SAB) vuông với đáy. Biết AD = 2BC = 2a, BD = a\(\sqrt{5}\) , góc tạo bởi SB và đáy là 30o . Tính SA