\(\left\{{}\begin{matrix}\left(SBC\right)\perp\left(ABCD\right)\\\left(SAB\right)\perp\left(ABCD\right)\end{matrix}\right.\) \(\Rightarrow SB\perp\left(ABCD\right)\)
Dễ dàng chứng minh \(AD\) và \(BC\perp\left(SAB\right)\)
Từ B kẻ \(BM\perp SA\), qua M kẻ \(MN//AD\Rightarrow SA\perp\left(BCNM\right)\)
\(\Rightarrow\) góc giữa \(\left(SAC\right);\left(SAD\right)\) là \(\widehat{CMN}\)
Mà \(\widehat{CMN}=\widehat{MCB}\) (so le trong) nên ta chỉ cần tính \(\alpha=\widehat{MCB}\)
\(BM=\frac{SB.AB}{\sqrt{SB^2+AB^2}}=\frac{2a\sqrt{3}}{3}\)
\(\Rightarrow tan\alpha=\frac{BM}{BC}=\frac{2\sqrt{3}}{9}\Rightarrow\alpha\approx21^03'\)