Gọi I là tâm cầu ngoại tiếp hình chóp tam giác S.ABC. Hạ IJ vuông góc (SAB), vì J cách đều 3 điểm S, A, B nên J cũng cách đều 3 điểm S, A, B.
Vì tam giác SAB vuông đỉnh S nên J là trung điểm của AB.
Ta có SJ = .
Do SC vuông góc (SAB) nên IJ // SC.
Gọi H là trung điểm SC, ta có SH = IJ = .
Do vậy, IS2 = IJ2 + SJ2 = (a2 + b2 + c2)/4 và bán kính hình cầu ngoại tiếp S.ABC là
r = IS = .
Diện tích mặt cầu là:
S = 4 πr2 = π(a2 + b2 + c2) (đvdt)
Thể tích khối cầu là :![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://img.loigiaihay.com/picture/article/2017/0214/bai-10-trang-49-sach-giao-khoa-hinh-hoc-lop-12_5_1487089663.jpg)
![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://img.loigiaihay.com/picture/article/2017/0214/bai-10-trang-49-sach-giao-khoa-hinh-hoc-lop-12_6_1487089663.jpg)