Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Suy ra: AC cắt MN tai trung điểm của mỗi đường(1)
Ta có: ABCDlà hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,BD.MN đồng quy
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Suy ra: AC cắt MN tai trung điểm của mỗi đường(1)
Ta có: ABCDlà hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,BD.MN đồng quy
Cho hình bình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE. N là giao điểm của BF và CE. Chứng minh rằng :
a) EMFN là hình bình hành
b) Các đường thẳng AC, EF, MN đồng quy
Cho hình bình hành ABCD,gọi E là trung điểm AB,F là trung điểm của CD,chứng minh AECF là hình bình hành.gọi M là giao điểm của AF và BD.N là giao điểm CE và BD,chứng minh: +,DM+MN=NB +,chứng minh:AC,BD,EF đồng quy
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA và I, K là trung điểm các đường chéo AC, BD.
Chứng minh: a) Các tứ giác MNPQ, INKQ là hình bình hành
b) Các đường thẳng MP, NQ, IK đồng quy
Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở M và N. Chứng minh rằng :
a)Tứ giác AICK là hình bình hành.
b) AI // CK.
c) DM = MN = NB.
•Cho hình bình hành ABCD. Gọi I, K Theo Thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI , CK theo thứ tự ở M, N. Chứng minh rằng:
a) AI //CK
b) DM=MN=NB
c) Chứng minh CM đi qua trung điểm của AD, AN đi qua trung điểm của BC.
d) Chứng minh K, O, I thẳng hàng, với O là giao của 2 đường chéo AC và BD.
cho hình bình hành ABCD (A>90).Gọi H và K lần lượt là hình chiếu của A và C lên BD . M là giao của AB với BK ;N là giao của CD với AH chứng minh
a) AHCK là hình bình hành
b) MN;HK;AC đồng quy
Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở M và N. Chứng minh rằng :
a) AI // CK
b) DM = MN = NB
Cho hình bình hành ABCD Gọi E là trung điểm của AB F là trung điểm của CD Chứng minh rằng a de = BF B Chứng minh rằng AB CD và e f đồng quy tại một điểm c b d cắt AF và Be lần lượt ở M và N Chứng minh rằng BM = MN = mn
Bài 6 :Cho hình bình hành ABCD, gọi E,F lần lượt là trung điểm của AB và CD
a) Tứ giác DEBF là hình gì?
b)C/m: AC,BD,EF đồng quy
c) Gọi giao điểm của AC với DE và BF thứ tự là M,N, chứng minh tứ giác EMFN là hình bình hành
d) Tính SEMFN khi AC = a, BC = b, AC ⊥ BD