cho he phuong trinh:
\(\left\{{}\begin{matrix}x+2y=m+1\\2x+3y=m-2\end{matrix}\right.\)
a. Giai he pt vs m=1
b. Tim m de he pt co nghiem (x;y) thoa man \(\left\{{}\begin{matrix}x>3\\y< 5\end{matrix}\right.\)
Giai phuong trinh nghiem nguyen
a)x2-4xy=23
tim x,y nguyen duong thoa man
4xy-3(x+y)=59
Cho \(\left\{{}\begin{matrix}x +my=2\\mx-2y=1\end{matrix}\right.\)a) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho x lớn hơn 0 và y lớn hơn 0 b) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho (x; y) nguyên
cho hpt{(a-1)x+y=a/x+(a-1)=2
a) giải hpt vs a=3
b) vs a=? thì hpt có nghiệm duy nhất
c) tìm a=? để hpt có nghiệm duy nhất(x,y) thỏa mãn x+y=-1
cho hệ phương trình : \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
a, giải hệ khi m=3
b, tìm m để hệ (1) có nghiệm(x;y) thỏa mãn \(x^2-2x+y>0\)
cho hệ phương trình với là tham\(\left\{{}\begin{matrix}x+y=2m+1\\2x-y=m+2\end{matrix}\right.\) số tìm m để hpt có nghiệm (x;y)thỏa mãn (x+1)(y-3)<0
1. Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
a, tìm các số nguyên m để hệ có nghiệm duy nhất với x>0 và y<0
b, tìm các số nguyên m để hệ có nghiệm duy nhất thỏa mãn x>2y
bài1: Cho hệ phương trình :\(\left\{{}\begin{matrix}2mx+3y=5\\\left(m+1\right)x+y=2\end{matrix}\right.\) tìm m để hpt có nghiệm duy nhất thỏa mãn x<0, y là số nguyên
Bài 2: tìm tất cả các số nguyên x, y thỏa mãn : \(^{x^2+2y^2-2xy-4y+3=0}\)
Mọi Ng giúp em với
Ai làm hết em tick đúng nha ( trước 19:00 hôm nay)
Bài 1: Giải hệ phương trình sau theo m
a, \(\left\{{}\begin{matrix}x-my=m^2+1\\mx+y=m^2+1\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x+y=m-2\\\left(m+2\right)x-4y=m^2-4\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}2x+my=m+2\\\left(m+1\right)x+2my=2m+4\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}mx+2y=3\\m^2x-4y=-6\end{matrix}\right.\)