cho tứ giác ABCD nội tiếp nửa đường tròn , đường kính AD. hai đường chéo AC và BD cắt nhau tại E.kẻ EF vuông góc với AD tại F. gọi M là trung điểm của DE. cm tứ giác BCMF nội tiệp
cho tam giác ABC vuông tại A ,điểm M nằm trên AB, vẽ dt <O, BM bằng 2r> CM cắt đường tròn tại D, AD cắt đường tròn tại E Chứng minh
a, tứ giác ACBD nội tiếp rồi suy ra 2 góc ABD và ACD bằng nhau
b, BA là phân giác góc EBC
c, cho BC bằng 4cm góc ABC bằng 30 độ tính diện tích hình viên giới hạn cung nhỏ AC và dây AC
Cho tam giác ABC có Aµ =1v. Trên AC lấy điểm M sao cho AM < MC. Vẽ đường tròn tâm O đường kính CM cắt BC tại E;đường thẳng BM cắt (O) tại D;AD kéo dài cắt (O) tại S.
1. C/m BADC nội tiếp.
2. BC cắt (O) ở E. Cmr: EM là phân giác của AED ·.
3. C/m CA là phân giác của góc BCS.
Cho tam giác ABC nhọn nội tiếp (O), (AB < AC), hai đường cao AD, BE, CF cắt nhau tại H.
a) CM: BCEF nội tiếp.
b) Gọi N là trung điểm của BC. Chứng minh: FC là tia phân giác của DFE và EFDN nội tiếp.
c) Đường thẳng vuông góc AB tại A cắt BE tại I. Qua A vẽ đường thẳng song song BC cắt EF tại M. MI cắt AH tại T. Chứng minh T là trung điểm của AH.
Cho tam giác ABC nhọn (AB<AC) nội tiếp (o) đường kính Ak, các đường cao AD, BE, CF cắt nhau tại. Gọi M là trung điểm BC.
a) Cm: Tứ giác DMEF nội tiếp
cho tam giác ABC có 3 góc nhọn AB<AC. AD,BE,CF là các đường cao. EF giao với BC tại N.Đường thẳng D//EF và cắt AB,AC tại X,Y
a, chứng minh BCEF ,ACDF nội tiếp
b, EB là phân giác góc DEF và AX/AY bằng AC/AB