Xét điểm \(M\left(m;0\right)\in Ox\).
Đường thẳng d đi qua M, hệ số góc k có phương trình : \(y=k\left(x-m\right)\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}-x^3+3x+2=k\left(x-m\right)\\-3x^2+3=k\end{cases}\) có nghiệm
Thế k vào phương trình thứ nhất, ta được :
\(3\left(x^2-1\right)\left(x-m\right)-\left(x^3-3x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2-3\left(1+m\right)x+3m\right)-\left(x+1\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[2x^2-\left(3m+2\right)x+3m+2\right]=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\2x^2-\left(3x+2\right)x+3m+2=0\left(a\right)\end{array}\right.\)
Để từ M kẻ được 3 tiếp tuyến thì (a) phải có 2 nghiệm phân biệt khác -1
\(\begin{cases}\Delta=\left(3m+2\right)\left(3m-6\right)>0\\3m+3\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}m< -\frac{2}{3}Vm>2\\m\ne-1\end{cases}\) (*)
Gọi \(x_1;x_2\) là 2 nghiệm của (a), khi đó hệ số góc của 3 tiếp tuyến là :
\(k_1=-3x_1^2+3;k_2=-3x_2^2+3;k_3=0\)
Để 2 trong 3 tiếp tuyến này vuông góc với nhau \(\Leftrightarrow k_1.k_2=-1\)
\(\Leftrightarrow9\left(x^2_1-1\right)\left(x^2_2-1\right)=1\Leftrightarrow9x^2_1x^2_2-9\left(x_1+x_2\right)^2+18x_1x_2+8=0\left(i\right)\)
Mặt khác, theo định lý Viet, \(x_1+x_2=\frac{3m+2}{2};x_1x_2=\frac{3m+2}{2};\)
Từ đó (i) \(\Leftrightarrow9\left(3m+2\right)+8=0\Leftrightarrow m=-\frac{26}{27}\) thỏa mãn điều kiện (*)
Vậy \(M\left(-\frac{26}{27};0\right)\) là điểm cần tìm