Bài 2: Phương trình đường thẳng trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho hai mặt phẳng (P) và (P') có vectơ pháp tuyến lần lượt là \(\overrightarrow{n}=\left(n_1;n_2;n_3\right),\overrightarrow{n'}=\left(n'_1;n'_2;n'_3\right)\) (Hình 14).

Gọi d và d' là hai đường thẳng lần lượt vuông góc với (P) và (P'). Góc giữa hai mặt phẳng (P) và (P') là góc giữa hai đường thẳng d và d'. So sánh cos((P), (P')) và \(\cos\left(\overrightarrow{n},\overrightarrow{n'}\right)\).

datcoder
30 tháng 10 lúc 14:02

Góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( {P'} \right)\) là góc giữa hai đường thẳng \(d\) và \(d'\), nên suy ra \(\left( {\left( P \right),\left( {P'} \right)} \right) = \left( {d,d'} \right).\)

Như vậy \(\cos \left( {\left( P \right),\left( {P'} \right)} \right) = \cos \left( {d,d'} \right) = \left| {\cos \left( {\vec n,\vec n'} \right)} \right|\). (Do \(\vec n\) và \(\vec n'\) lần lượt là các vectơ chỉ phương của các đường thẳng \(d\) và \(d'.\)