Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. BC là tiếp tuyến chung ngoài, \(B\in\left(O\right),C\in\left(O'\right)\). Tiếp tuyến chung tại A cắt BC ở điểm M. Gọi E là giao điểm của OM và AB, F là giao điểm của O'M và AC. Chứng minh rằng :
a) Tứ giác AEMF là hình chữ nhật
b) ME . MO = MF . MO'
c) OO' là tiếp tuyến của đường tròn có đường kính là BC
d) BC là tiếp tuyến của đường tròn có đường kính là OO'
b)ME.MO = MA2 (hệ thức lượng trong MAO vuông)
MF.MO’ = MA2 (hệ thức lượng trong MAO’ vuông)
Suy ra ME.MO = MF.MO’
c)Đường tròn có đường kính BC có tâm M, bán kính MA.OO’ vuông góc với MA tại A nên là tiếp tuyến của đường tròn (M).
d)Hình b
Gọi I là trung điểm của OO’, I là tâm của đường tròn có đường kính OO’, IM là bán kính (vì MI là trung tuyến ứng với cạnh huyền của MOO’. IM là đường trung bình của hình thang OBCO’ nên IM // OB // O’C. Do đó IM ⊥ BC.
BC vuông góc với IM tại M nên BC là tiếp tuyến của đường tròn (I).