+ ΔAOB có đường trung tuyến Ox vừa là đường cao
=> ΔAOB cân tại O
=> \(\Rightarrow\left\{{}\begin{matrix}OA=OB\\\widehat{xOA}=\widehat{xOB}\end{matrix}\right.\)
+ Tương tự ta có : \(\left\{{}\begin{matrix}OB=OC\\\widehat{AOy}=\widehat{COy}\end{matrix}\right.\)
=> OB = OC
+ \(\widehat{BOC}=\widehat{xOB}+\widehat{xOA}+\widehat{AOy}+\widehat{COy}\)
\(=2\widehat{xOy}=120^o\)
a) Ox là đường trung trực của AB.
=> OB = OA (tính chất đường trung trực) (1)
Oy là đường trung trực của AC.
=> OA = OC (tính chất đường trung trực) (2)
Từ (1) và (2) suy ra: OB = OC.
b) ∆OAB cân tại O.
Ox là đường trung trực của AB.
Nên Ox là đường phân giác của \(\widehat {AOB}\) (tính chất tam giác cân)
\( \Rightarrow \widehat {{O_3}} = \widehat {{O_4}}\)
∆OAC cân tại O
Oy là đường trung trực của AC.
Nên Oy là đường phân giác của \(\widehat {AOC}\) (tính chất tam giác cân)
\( \Rightarrow \widehat {{O_1}} = \widehat {{O_2}}\)
Suy ra: \(\widehat {{O_1}} + \widehat {{O_3}} = \widehat {{O_2}} + \widehat {{O_4}}\)
\(\widehat {BOC} = \widehat {{O_1}} + \widehat {{O_2}} + \widehat {{O_3}} + \widehat {{O_4}} \)
\(= 2\left( {\widehat {{O_1}} + \widehat {{O_3}}} \right) \)
\(= 2\widehat {xOy} \)
\(= 2.60^\circ = 120^\circ \)