Bài 7: Tính chất đường trung trực của một đoạn thẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Thùy Linh

Cho goc Xoy bang 60 va diem A nam trong goc Xoy.Ve diem B sao cho Ox la duong trung truc cua AB.Ve diem C sao cho Oy la duong trung truc cua AC

a,CMR:OB=OC

b,Tinh so do goc BOC

Y
22 tháng 3 2019 lúc 18:00

x y O A B C

+ ΔAOB có đường trung tuyến Ox vừa là đường cao

=> ΔAOB cân tại O

=> \(\Rightarrow\left\{{}\begin{matrix}OA=OB\\\widehat{xOA}=\widehat{xOB}\end{matrix}\right.\)

+ Tương tự ta có : \(\left\{{}\begin{matrix}OB=OC\\\widehat{AOy}=\widehat{COy}\end{matrix}\right.\)

=> OB = OC

+ \(\widehat{BOC}=\widehat{xOB}+\widehat{xOA}+\widehat{AOy}+\widehat{COy}\)

\(=2\widehat{xOy}=120^o\)

Nguyễn Thành Trương
22 tháng 3 2019 lúc 19:37

a) Ox là đường trung trực của AB.

=> OB = OA (tính chất đường trung trực) (1)

Oy là đường trung trực của AC.

=> OA = OC (tính chất đường trung trực) (2)

Từ (1) và (2) suy ra: OB = OC.

b) ∆OAB cân tại O.

Ox là đường trung trực của AB.

Nên Ox là đường phân giác của \(\widehat {AOB}\) (tính chất tam giác cân)

\( \Rightarrow \widehat {{O_3}} = \widehat {{O_4}}\)

∆OAC cân tại O

Oy là đường trung trực của AC.

Nên Oy là đường phân giác của \(\widehat {AOC}\) (tính chất tam giác cân)

\( \Rightarrow \widehat {{O_1}} = \widehat {{O_2}}\)

Suy ra: \(\widehat {{O_1}} + \widehat {{O_3}} = \widehat {{O_2}} + \widehat {{O_4}}\)

\(\widehat {BOC} = \widehat {{O_1}} + \widehat {{O_2}} + \widehat {{O_3}} + \widehat {{O_4}} \)

\(= 2\left( {\widehat {{O_1}} + \widehat {{O_3}}} \right) \)

\(= 2\widehat {xOy} \)

\(= 2.60^\circ = 120^\circ \)


Các câu hỏi tương tự
Hope No
Xem chi tiết
Hope No
Xem chi tiết
Hope No
Xem chi tiết
diễmlùn2004
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thu Thao Vo
Xem chi tiết
Phan Minh Đức
Xem chi tiết
Diệp Băng Giao
Xem chi tiết
Nguyễn thị trang
Xem chi tiết