Đặt OA = a ; OB = b ; OC = c . Khi đó :
\(OA+OB+OC+AB+BC+AC=a+b+c+\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\)
AD BĐT Cauchy ta được : \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\ge\sqrt{2}\left(a+b+c\right)\)
Suy ra : l \(\ge\left(\sqrt{2}+1\right)\left(a+b+c\right)\ge\left(\sqrt{2}+1\right)3\sqrt[3]{abc}\)
Có : \(V=V_{OABC}=\dfrac{abc}{6}\) . Suy ra : \(l\ge3\left(\sqrt{2}+1\right)\sqrt[3]{6V}\Leftrightarrow V\le\dfrac{l^3}{27\left(\sqrt{2}+1\right)^3.6}=\dfrac{l^3}{162\left(\sqrt{2}+1\right)^3}\)
" = " \(\Leftrightarrow a=b=c\) = \(\dfrac{l\left(\sqrt{2}-1\right)}{3}\)