Bài 34. Ba trường hợp đồng dạng của hai tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho góc BAC và các điểm M, N lần lượt trên các đoạn thẳng AB, AC sao cho \(\widehat {ABN} = \widehat {ACM}\)

a) Chứng minh rằng ΔABN ∽ ΔACM

b) Gọi I là giao điểm của BN và CM. Chứng minh rằng IB.IN=IC.IM

a) Xét tam giác ABN và tam giác ACM

có góc A chung, \(\widehat {ABN} = \widehat {ACM}\)

=> ΔABN ∽ ΔACM

b) Có ΔABN ∽ ΔACM

\(\widehat {ANB} = \widehat {AMC}\)

Có \(\widehat {ANB} + \widehat {CNB} = {180^o}\)

     \(\widehat {AMC} + \widehat {BMC} = {180^o}\)

=> \(\widehat {CNB} = \widehat {BMC}\)

Xét tam giác IBM và tam giác ICN 

Có \(\widehat {CNB} = \widehat {BMC}\) và \(\widehat {IBM} = \widehat {ICN}\)

  => ΔIBM ∽ ΔICN (g.g)

=> \(\frac{{IB}}{{IC}} = \frac{{IM}}{{IN}}\)

=> IB.IN=IC.IM


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết