cho đường tròn (o;R) và một điểm A sao cho Oa=2R vẽ tiếp tuyến AB với đường tròn tâm o (b là tiếp tuyến ) vẽ dây Bc của đường tròn tâm o vuông góc với OA tại H
a) tính Ab theo R và chứng minh Ac là tiếp tuyến của đường tròn tâm O
b) c/m tam giác abc là tam giác đều
c) trên tia đối của tia BC lấy điểm Q. từ Q vẽ 2 tiếp tuyến QD vad QE của đường tròn tâm O ( D và E là 2 tiếp tuyến ). C/M 2 điểm A,E,D thẳng hàng
Cho đường tròn tâm O, bán kính R và M là một điểm nằm bên ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Gọi E là giao điểm của AB và OM.
a) Chứng minh tứ giác MAOB nội tiếp được trong một đường tròn.
b) Tính độ dài đoạn thẳng AB và ME biết OM = 5cm và R = 3cm.
c) Kẻ tia Mx nằm trong góc AMO cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D). Chứng minh rằng góc MEC = góc OED
Cho (O, R) đường kính AB. Gọi H là trung điểm của OA. Qua H kẻ đường thẳng vuông góc
với AB cắt (O) tại hai điểm C và D .
a/ Tứ giác ACOD là hình gì? Chứng minh?
b/ Qua điểm D kẻ tiếp tuyến với đường tròn (O) cắt tia OA tại M. Chứng minh MC là tiếp tuyến của
đường tròn (O) tại C và tam giác MCD là tam giác dều.
c/ Tính chu vi và diện tích cùa MCD theo R .
d/ Gọi N là trung điểm của HB, đường thẳng kẻ qua H vuông góc với CN cắt đường thẳng CA tại E.
Chứng minh A là trung điểm cùa CE.
Cho đường tròn (O,R) .từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB và AC với đường tròn (B,C là tiếp điểm).AO cắt BC tại H a)cm 4 điểm A,B,O,C cùng thuộc đường tròn b) cm OA vuông góc BC tại H c) cho OA=2R .tính chu vi tam giác ABC theo R d) vẽ cát tuyến AMN với đường tròn.xác định vị trí của cát tuyến AMN sao cho nhỏ nhất .
Cho đường tròn tâm ( và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm tiếp điểm). Gọi H là giao điểm của OA và BC. a) Chứng minh: AO là đường trung trực của BC và BC= 4.OH. HA. b) AO cắt đường tròn (O) tại I và K ( 1 nằm giữa A và O). Chứng minh: tam giác KBI vuông và AI. KH=IH. KA.
Cho đường tròn (O) và điểm A cố định trên đường tròn. Gọi xy là tiếp tuyến với đường tròn tại A. Từ một điểm M nằm trên xy, vẽ tiếp tuyến MB với đường tròn. Gọi H là trực tâm của tam giác MAB
a) Chứng minh rằng 3 điểm M, H,O thẳng hàng
b) Tứ giác AOBH là hình gì ?
c) Khi M di chuyển trên xy thì H di chuyển trên đường nào ?
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O) ; AD cắt đường tròn (O) tại E ( E khác D).
a) Chứng minh: OA ⊥ BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn.
b) Chứng minh: CD // OA và AH.AO = AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
Bài 1. Cho dường tròn (O,R) và điểm A nằm ngoài (O). Từ A kẻ tiếp tuyến AB, AC (B,C là tiếp điểm), OA cắt BC tại H
a) Chứng minh: OA là trung trực của BC
b) Qua B kẻ dường thẳng song song với OA cắt đường tròn (0) tại D, AD cắt (0) tại E. Chứng minh: AE.AD = AH.AO
c) Qua 0 kẻ OK vuông góc với EC tại K, OK cắt (0) tại I
cho điểm A nằm ngoài đường tròn tâm O bán kình R từ A kẻ hai tiếp tuyến AB, Ac với đường tròn tâm o ( b, C là tiếp điểm)
a) giả sử R=15 và OA = 25 hãy tính AB
b) c/m oa vuông góc với bc tại K
c) kẻ đường kính CD của đường tròn tâm o gọi P là giao điểm của AC và DB. C/M Ap=AC
d) kẻ BH vuông góc với cd tại H gọi I là giao điểm của BN và AD. C/m Sabd=2Sabd là diện tích tam giác BCD; Scdb là diện tích tam giác CID