Cho đường tròn tâm O. Trên nửa đường tròn đường kính AB lấy hai điểm C, D. Từ C kẻ CH vuông góc với AB, nó cắt đường tròn tại điểm thứ hai là E. Từ A kẻ AK vuông góc với DC, nó cắt đường tròn tại điểm thứ hai là F. Chứng minh rằng :
a) Hai cung nhỏ CF và DB bằng nhau
b) Hai cung nhỏ BF và DE bằng nhau
c) DE = BF
Cho đường tròn (O) đường kính AB. Vẽ 2 dây AM và BN song song sao cho sđ cung BM<90 độ. Vẽ dây MD song song với AB. Dây DN cắt AB tại F. Từ R vẽ 1 đường thẳng song song với AM cắt DM tại C. Chứng minh:
a, AB vuông góc DN
b, BC là tiếp tuyến của (O)
cho (o;r) đường kính AB . lấy C trên tuyến tại A của O sao cho AC bằng 2R. gọi D là giao điểm BC và O
a) c/m tam giác ABC cân
b) kẻ dây AF vuông OC tại H . c/m CE tiếp tuyến của (O;R)
Cho điểm A nằm ngoài đường tròn (O;R); vẽ các tiếp tuyến AB, AC đến đường tròn .Trên cung lớn BC lấy điểm K bất kì tiếp tuyến K cắt AB và AC tại P và Q. OP và OQ cắt (O) tại M và N. Cmr khoảng cách từ O đến MN không phụ thuộc vào vị trí của K
cho đường tròn tâm O dây cung AB cố định lấy m thuộc cung nhỏ AB(M#A,M#B) kẻ MN vuông góc với AB tại H, từ M hạ MP vuông góc với AN(P THUỘC AN),kẻ MQ vuông góc với NB.tìm M để MP.AN+MQ.BN nhỏ nhất
Cho nửa đường tròn tâm O đường kính AB và C là điểm chính giữa của nửa đường tròn trên các tia AB và CD lần lượt lấy các điểm M và N sao cho cung CM = cung BN Chứng minh a, AM= CN
b, M N = AC = CB
Cho nửa đường tròn tâm O, đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A,B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự ở C và D. Biết CD=a và BD= 3AC
a) CMR: OC và OD vuông góc
b) Tính tỉ số AC^2+BD^2/ CD^2
c) Tính theo a diện tích tứ giác ACDB
Trên dây cung AB của một đường tròn O, lấy hai điểm C và D chia dây này thành ba đoạn thẳng bằng nhau AC = CD = DB. Các bán kính qua C và D cắt cung nhỏ AB lần lượt tại E và F. Chứng minh rằng :
a) Cung AE = Cung FB
b) Cung AE = Cung EF